导航:首页 > 程序命令 > stata岭回归命令

stata岭回归命令

发布时间:2024-12-02 05:53:22

‘壹’ 如何用Stata命令消除多重共线性问题

影响
(1)完全共线性下参数估计量不存在
(2)近似共线性下OLS估计量非有效
多重共线性使参数估计值的方差增大,1/(1-r2)为方差膨胀因子(Variance Inflation Factor, VIF)如果方差膨胀因子值越大,说明共线性越强。相反 因为,容许度是方差膨胀因子的倒数,所以,容许度越小,共线性越强。可以这样记忆:容许度代表容许,也就是许可,如果,值越小,代表在数值上越不容许,就是越小,越不要。而共线性是一个负面指标,在分析中都是不希望它出现,将共线性和容许度联系在一起,容许度越小,越不要,实际情况越不好,共线性这个“坏蛋”越强。进一步,方差膨胀因子因为是容许度倒数,所以反过来。
总之就是找容易记忆的方法。
(3)参数估计量经济含义不合理
(4)变量的显着性检验失去意义,可能将重要的解释变量排除在模型之外
(5)模型的预测功能失效。变大的方差容易使区间预测的“区间”变大,使预测失去意义。
需要注意:即使出现较高程度的多重共线性,OLS估计量仍具有线性性等良好的统计性质。但是OLS法在统计推断上无法给出真正有用的信息。
判断方法
如图,是对德国人口老龄化情况的分析,其中y是老龄化情况,线性回归的x1、x2、x3分别为人均国内生产总值、出生率、每个医生平均负担人口数。
判断方法1:特征值,存在维度为3和4的值约等于0,说明存在比较严重的共线性。
判断方法2:条件索引列第3第4的值大于10,可以说明存在比较严重的共线性。
判断方法3:比例方差内存在接近1的数(0.99),可以说明存在较严重的共线性。
解决方法
(1)排除引起共线性的变量
找出引起多重共线性的解释变量,将它排除出去,以逐步回归法得到最广泛的应用。
(2)差分法
时间序列数据、线性模型:将原模型变换为差分模型。
(3)减小参数估计量的方差:岭回归法(Ridge Regression)。
(4)简单相关系数检验法

阅读全文

与stata岭回归命令相关的资料

热点内容
php53以上 浏览:810
iphone手机怎么用安卓应用 浏览:492
本地文件如何传到华为云服务器 浏览:383
加密ic卡在电脑怎么复制 浏览:522
鄞州繁裕三村附近启蒙编程学校 浏览:555
单片机里code什么意思 浏览:182
linux修改umask 浏览:536
编程锁的发展 浏览:346
唯词app怎么改密码 浏览:72
魔兽世界表情命令 浏览:985
智能还款信用卡源码 浏览:554
zoo文件夹 浏览:762
安卓2k21如何下载 浏览:648
某年某月的天数python 浏览:913
广度优先算法的复杂度 浏览:399
系统重装网站源码 浏览:152
相册加密相片 浏览:297
美国正常化行政命令 浏览:277
中级审计师教材pdf 浏览:696
wps中pdf旋转 浏览:600