1. 解释变量内生性如何处理
解释变量内生性检验
首先检验解释变量内生性(解释变量内生性的Hausman 检验:使用工具变量法的前提是存在内生解释变量。Hausman 检验的原假设为:所有解释变量均为外生变量,如果拒绝,则认为存在内生解释变量,要用IV;反之,如果接受,则认为不存在内生解释变量,应该使用OLS。
reg ldi lofdi
estimates store ols
xtivreg ldi (lofdi=l.lofdi ldep lexr)
estimates store iv
hausman iv ols
(在面板数据中使用工具变量,Stata提供了如下命令来执行2SLS:xtivreg depvar [varlist1] (varlist_2=varlist_iv) (选择项可以为fe,re等,表示固定效应、随机效应等。详见help xtivreg)
如果存在内生解释变量,则应该选用工具变量,工具变量个数不少于方程中内生解释变量的个数。“恰好识别”时用2SLS。2SLS的实质是把内生解释变量分成两部分,即由工具变量所造成的外生的变动部分,以及与扰动项相关的其他部分;然后,把被解释变量对中的这个外生部分进行回归,从而满足OLS前定变量的要求而得到一致估计量。tptqtp
二、异方差与自相关检验
在球型扰动项的假定下,2SLS是最有效的。但如果扰动项存在异方差或自相关,
面板异方差检验:
xtgls enc invs exp imp esc mrl,igls panel(het)
estimates store hetero
xtgls enc invs exp imp esc mrl,igls
estimates store homo
local df = e(N_g) - 1
lrtest hetero homo, df(`df')
面板自相关:xtserial enc invs exp imp esc mrl
则存在一种更有效的方法,即GMM。从某种意义上,GMM之于2SLS正如GLS之于OLS。好识别的情况下,GMM还原为普通的工具变量法;过度识别时传统的矩估计法行不通,只有这时才有必要使用GMM,过度识别检验(Overidentification Test或J Test):estat overid
三、工具变量效果验证
工具变量:工具变量要求与内生解释变量相关,但又不能与被解释变量的扰动项相关。由于这两个要求常常是矛盾的,故在实践上寻找合适的工具变量常常很困难,需要相当的想象力与创作性。常用滞后变量。
需要做的检验:
检验工具变量的有效性:
(1) 检验工具变量与解释变量的相关性
如果工具变量z与内生解释变量完全不相关,则无法使用工具变量法;如果与仅仅微弱地相关,。这种工具变量被称为“弱工具变量”(weak instruments)后果就象样本容量过小。检验弱工具变量的一个经验规则是,如果在第一阶段回归中,F统计量大于10,则可不必担心弱工具变量问题。Stata命令:estat first(显示第一个阶段回归中的统计量)
(2) 检验工具变量的外生性(接受原假设好)
在恰好识别的情况下,无法检验工具变量是否与扰动项相关。在过度识别(工具变量个数>内生变量个数)的情况下,则可进行过度识别检验(Overidentification Test),检验原假设所有工具变量都是外生的。如果拒绝该原假设,则认为至少某个变量不是外生的,即与扰动项相关。0H
Sargan统计量,Stata命令:estat overid
四、GMM过程
在Stata输入以下命令,就可以进行对面板数据的GMM估计。
. ssc install ivreg2 (安装程序ivreg2 )
. ssc install ranktest (安装另外一个在运行ivreg2 时需要用到的辅助程序ranktest)
. use "traffic.dta"(打开面板数据)
. xtset panelvar timevar (设置面板变量及时间变量)
. ivreg2 y x1 (x2=z1 z2),gmm2s (进行面板GMM估计,其中2s指的是2-step GMM)
2. 内生性处理:工具变量法
内生性问题是解释变量与扰动项相关导致的,具体的表现形式有遗漏变量、双向因果和测量误差。
OLS能够成立的最重要前提条件是解释变量与扰动项不相关。否则,OLS估计量将是有偏且不一致的。
无偏是指估计量的期望等于真实值。一致性是指,随着样本的增大,估计量无限接近于真实值。
固定效应模型在 一定程度上 可以缓解内生性。因为使用固定效应模型的原因是存在个体效应、时间效应与解释变量相关。此时如果不用固定效应模型,这些个体、时间影响就会溜到扰动项中,就产生了内生性问题。
解决内生性问题常见的做法是使用工具变量。
工具变量:与模型中内生变量(解释变量)高度相关,但却不与误差项相关,估计过程中被作为工具使用,以替代模型中与误差项相关的解释变量的变量。
“找好的工具变量好比寻找一个好的伴侣,ta应该强烈地爱着你(强相关),但不能爱着别人(外生性)。”
IV法可以视为2SLS的特例。 当内生变量个数=工具变量个数时,称为IV法;当内生变量个数<工具变量个数时,称为2SLS
2SLS思路如下:
y=α+βx1+γx2+u,其中x1是严格外生的,x2是内生的,则至少需要1个工具变量,z1为工具变量。
第一阶段回归:内生变量和工具变量
x2=a+bz1+cx1+e
第二阶段回归:内生变量的预测值和被解释变量
y=α+βx1+γx2'+v
2SLS背后逻辑:
将内生解释变量分为两部分,有工具变量造成的外生部分和与扰动项相关的内生部分。
第一阶段:通过外生变量的预测回归,得到这些变量的外生部分。
第二阶段:把被解释变量对解释变量中的外生部分进行回归,消除偏误得到一致估计。
注意:为了保证2SLS的一致性,必须把原方程中所有的外生解释变量都放入第一阶段回归。
2SLS的难点在于恰当的工具变量选择。若存在N个内生解释变量,则至少需要N个工具变量。
假设回归模型
stata命令如下:
以上命令ivregress 2sls 和 ivreg2是等价的,只是 ivreg2显示的内容更为丰富。xtivreg2 相较于ivreg2,就是OLS和FE/FD模型的差别,ivreg2 ... i.Year i.id等价于xtivreg2 ... i.Year, fe。
针对工具变量有三大检验:
以上三大检验,优先做相关性检验。这是由于弱工具变量会对估计结果以及外生性检验结果产生影响。
(1)相关性检验
a.不可识别检验
不可识别检验的原假设是秩条件不成立,即工具变量与解释变量不相关。不可识别检验在一定程度上可以验证是否存在弱工具变量,但不能取代对弱工具变量的检验。关于弱工具变量的检验,可以分为单个内生变量和多个内生变量。
b.弱工具变量检验
如果方程中有一个内生变量,一个经验规则是在第一阶段回归中,如果F统计量>10,则可拒绝“存在弱工具变量”的原假设,不必担心弱工具变量的问题。
如果方程中有多个内生变量,Stock & Yogo给出了检验规则:如果弱识别检验的最小特征值统计量>15% maximal IV size对应的临界值,就可以认为工具变量不存在弱相关问题。
如果发现是弱工具变量,解决的方法有:
(2)内生性检验
首先假定内生性进行2SLS回归,然后假定不存在内生性进行OLS回归,最后使用豪斯曼检验。
当p值<0.1时,表明两个回归的系数存在显着的系统性差异,及关注的核心变量有内生性。
(3)外生性检验
在恰好识别的情况下,即工具变量数=内生变量数,此时公认无法检验工具变量的外生性,即工具变量与扰动项不相关。在这种情况下,只能进行定性讨论或依赖于专家的意见。在过度识别的情况下,可以进行“过度识别检验”。当p>0.1,接受原假设,说明工具变量具有外生性。
注意,如果误差项存在异方差或自相关,那么2SLS的估计虽然是一致估计量,但不是有效估计量。更有效的方法是“广义矩估计”GMM。 某种意义上,GMM之于2SLS,正如GLS之于OLS,前者可以获得有效估计量,后者只能获得一致估计量。
该方法的前提条件是:工具变量数>内生变量数,且2SLS存在异方差或自相关
综上,在使用stata进行2SLS时,推荐使用ivreg2或xtivreg2。
对于面板数据,建议先对模型进行变换,然后对变换后的模型使用2SLS:
参考资料:
《高级计量经济学及stata应用》
面板数据分析与Stata应用
测量误差及其对统计分析的影响
有人能讲讲工具变量和2SLS之间的关系吗?
工具变量法(五): 为何第一阶段回归应包括所有外生解释变量
xtivreg2和它的山寨者