导航:首页 > 程序命令 > 程序员做的时钟代码

程序员做的时钟代码

发布时间:2025-01-08 02:15:36

❶ 如何在C++中如何编写得到微妙单位的时间的代码

网络, ctrlc, ctrlv。。。

c++ 毫秒,微妙级计时方法
在Windows平台下,常用的计时器有两种,一种是timeGetTime多媒体计时器,它可以提供毫秒级的计时。但这个精度对很多应用场合而言还是太粗糙了。另一种是QueryPerformanceCount计数器,随系统的不同可以提供微秒级的计数。对于实时图形处理、多媒体数据流处理、或者实时系统构造的程序员,善用QueryPerformanceCount/QueryPerformanceFrequency是一项基本功。
在Intel Pentium以上级别的CPU中,有一个称为“时间戳(Time Stamp)”的部件,它以64位无符号整型数的格式,记录了自CPU上电以来所经过的时钟周期数。由于目前的CPU主频都非常高,因此这个部件可以达到纳秒级的计时精度。这个精确性是上述两种方法所无法比拟的。
在Pentium以上的CPU中,提供了一条机器指令RDTSC(Read Time Stamp Counter)来读取这个时间戳的数字,并将其保存在EDX:EAX寄存器对中。由于EDX:EAX寄存器对恰好是Win32平台下C++语言保存函数返回值的寄存器,所以我们可以把这条指令看成是一个普通的函数调用。像这样:

inline unsigned __int64 GetCycleCount()
{
__asm RDTSC
}

但是不行,因为RDTSC不被C++的内嵌汇编器直接支持,所以我们要用_emit伪指令直接嵌入该指令的机器码形式0X0F、0X31,如下:

inline unsigned __int64 GetCycleCount()
{
__asm _emit 0x0F
__asm _emit 0x31
}

以后在需要计数器的场合,可以像使用普通的Win32 API一样,调用两次GetCycleCount函数,比较两个返回值的差,像这样:

unsigned long t;
t = (unsigned long)GetCycleCount();
//Do Something time-intensive ...
t -= (unsigned long)GetCycleCount();
这个方法的优点是:
1.高精度。可以直接达到纳秒级的计时精度(在1GHz的CPU上每个时钟周期就是一纳秒),这是其他计时方法所难以企及的。
2.成本低。timeGetTime 函数需要链接多媒体库winmm.lib,QueryPerformance* 函数根据MSDN的说明,需要硬件的支持(虽然我还没有见过不支持的机器)和KERNEL库的支持,所以二者都只能在Windows平台下使用(关于DOS平台下的高精度计时问题,可以参考《图形程序开发人员指南》,里面有关于控制定时器8253的详细说明)。但RDTSC指令是一条CPU指令,凡是i386平台下Pentium以上的机器均支持,甚至没有平台的限制(我相信i386版本UNIX和Linux下这个方法同样适用,但没有条件试验),而且函数调用的开销是最小的。
3.具有和CPU主频直接对应的速率关系。一个计数相当于1/(CPU主频Hz数)秒,这样只要知道了CPU的主频,可以直接计算出时间。这和QueryPerformanceCount不同,后者需要通过QueryPerformanceFrequency获取当前计数器每秒的计数次数才能换算成时间。

这个方法的缺点是:
1.现有的C/C++编译器多数不直接支持使用RDTSC指令,需要用直接嵌入机器码的方式编程,比较麻烦。
2.数据抖动比较厉害。其实对任何计量手段而言,精度和稳定性永远是一对矛盾。如果用低精度的timeGetTime来计时,基本上每次计时的结果都是相同的;而RDTSC指令每次结果都不一样,经常有几百甚至上千的差距。这是这种方法高精度本身固有的矛盾。

下面是几个小例子,简要比较了三种计时方法的用法与精度
//Timer1.cpp 使用了RDTSC指令的Timer类//KTimer类的定义可以参见《Windows图形编程》P15
//编译行:CL Timer1.cpp /link USER32.lib
#include <stdio.h>
#include "KTimer.h"
main()
{
unsigned t;
KTimer timer;
timer.Start();
Sleep(1000);
t = timer.Stop();
printf("Lasting Time: %d\n",t);
}

//Timer2.cpp 使用了timeGetTime函数
//需包含<mmsys.h>,但由于Windows头文件错综复杂的关系
//简单包含<windows.h>比较偷懒:)
//编译行:CL timer2.cpp /link winmm.lib
#include <windows.h>
#include <stdio.h>

main()
{
DWORD t1, t2;
t1 = timeGetTime();
Sleep(1000);
t2 = timeGetTime();
printf("Begin Time: %u\n", t1);
printf("End Time: %u\n", t2);
printf("Lasting Time: %u\n",(t2-t1));
}

//Timer3.cpp 使用了QueryPerformanceCounter函数
//编译行:CL timer3.cpp /link KERNEl32.lib
#include <windows.h>
#include <stdio.h>

main()
{
LARGE_INTEGER t1, t2, tc;
QueryPerformanceFrequency(&tc);
printf("Frequency: %u\n", tc.QuadPart);
QueryPerformanceCounter(&t1);
Sleep(1000);
QueryPerformanceCounter(&t2);
printf("Begin Time: %u\n", t1.QuadPart);
printf("End Time: %u\n", t2.QuadPart);
printf("Lasting Time: %u\n",( t2.QuadPart- t1.QuadPart));
}

❷ cpu主要看什么参数

cpu的性能指标是:主频、外频。

1、主频:主频也就是CPU的时钟频率,也是cpu的性能指标。简单地说也就是CPU的工作频率。一般说来,一个时钟周期完成的指令数是固定的,所以主频越高,CPU的速度也就越快了。不过由于各种CPU的内部结构也不尽相同,所以并不能完全用主频来概括CPU的性能。

cpu的作用

1、执行计算:CPU最基本的功能是执行各种算术和逻辑运算。例如,加法、减法、乘法、除法、幂运算等。这些运算可以是简单的数学计算,也可以是复杂的科学计算和工程计算。

2、控制和协调:CPU负责管理计算机系统中的各个组件,如内存、输入/输出设备、网络接口等。它通过与这些组件进行通信和交互,协调它们的工作,并确保系统的稳定性和可靠性。

3、执行指令:CPU通过执行一系列指令来执行计算和数据处理任务。这些指令可以是程序员编写的程序或操作系统内核的代码。通过执行指令,CPU可以完成各种任务,如处理用户输入、执行应用程序、管理文件系统等。

阅读全文

与程序员做的时钟代码相关的资料

热点内容
vf命令编号 浏览:578
怎么解决excel编译错误 浏览:939
什么电视app可以免费看戏曲 浏览:929
图形界面登陆linux 浏览:856
python简单还是php简单 浏览:216
华为方舟编译器首秀大牛力捧 浏览:635
cxf动态编译问题 浏览:727
特斯拉密钥怎么加密 浏览:319
opencv3forlinux 浏览:683
编译器中扫描器的任务是 浏览:537
马上消费金融app是什么时候出来的 浏览:494
程序编译成功但运行不了 浏览:482
北京程序员的一天望京soho 浏览:669
小程序怎么保存编译 浏览:766
linuxhba卡驱动 浏览:544
2016证券从业资格教材pdf 浏览:389
windows系统pdf 浏览:354
服务器机箱如何干扰信号 浏览:366
android引用系统资源文件 浏览:986
服务器虚拟机操作系统下载地址 浏览:947