导航:首页 > 编程语言 > python的库

python的库

发布时间:2022-01-22 00:45:43

❶ 常用的python库有哪些

1.Matplotlib


Matplotlib是一个用于创立二维图和图形的底层库。借由它的协助,你可以构建各种不同的图标,从直方图和散点图到费笛卡尔坐标图。matplotlib可以与许多盛行的绘图库结合运用。


2.Seaborn


Seaborn本质上是一个根据matplotlib库的高级API。它包括更适合处理图表的默认设置。此外,还有丰厚的可视化库,包括一些杂乱类型,如时刻序列、联合分布图(jointplots)和小提琴图(violindiagrams)。


3.Plotly


Plotly是一个盛行的库,它可以让你轻松构建杂乱的图形。该软件包适用于交互式Web运用程,可完成轮廓图、三元图和三维图等视觉效果


4.Bokeh


Bokeh库运用JavaScript小部件在浏览器中创立交互式和可缩放的可视化。该库提供了多种图表调集,样式可能性(stylingpossibilities),链接图、增加小部件和界说回调等方式的交互才能,以及许多更有用的特性。


5.Pydot


Pydot是用纯Python编写的Graphviz接口,经常用于生成杂乱的定向图和无向图,可以显现图形的结构,对于构建神经网络和根据决策树的算法时十分有效。


6.pyecharts


是根据网络开源的Echarts而开发的Python可视化东西。


pyecharts功用十分强大,支撑多达400+地图;支撑JupyterNotebook、JupyterLab;可以轻松集成至Flask,Sanic,Django等干流Web结构。


关于常用的python库有哪些,环球青藤小编就和大家分享到这里了,学习是没有尽头的,学习一项技能更是受益终身,因此,只要肯努力学,什么时候开始都不晚。如若你还想继续了解关于python编程的素材及学习方法等内容,可以点击本站其他文章学习。

❷ python哪些标准库

标准库比较多 功能也不同:
标准库
sys
系统相关的参数和函数。 sys 库一般用来访问和修改系统相关信息,比如查看 python 版本、系统环境变量、模块信息和 python 解释器相关信息等等。
os
操作系统接口模块。这个库提供了访问操作系统相关依赖的方式,比如输入输出操作、读写操作、操作系统异常错误信息、进程线程管理、文件管理、调度程序等等。
re
正则表达式操作。这个库是我喜欢并且经常会用到的库,在对大量字符串进行处理的时候用正则表达式是最快速有效的方式,但是正则表达式的学习曲线较高,有兴趣的朋友可以访问这个网站学习。
math
数学函数库。 math 库提供了对 C 语言标准定义的数学函数访问,比如数论(Number-theoretic)的各种表示方法、幂和对数函数(Power and logarithmic functions)、三角函数(Trigonometric functions)、常量圆周率(π)和自然常数(e)等等。
random
生成伪随机数。
伪随机数与随机数(真随机数)不同的是执行环境,随机数是真实世界中通过物理过程实践得出结论,而伪随机数是通过计算机的特定算法生成的数,所以这个过程是可预测的、有规律的,只是循环周期较长,并不能与现实场景相切合。
random库提供生成随机数,可以模拟现实世界中随机取数、随机抽奖等等。
logging
日志记录工具。这个库提供了对应用程序和库函数的日志记录,日常开发中我们经常需要通过日志打印出当前程序的运行状态,实时查看可能出现的堆栈异常和错误信息。
json
Json 编码和解码器。 json 库提供了对 json 数据的支持,日常开发中我们做前后端分离需要对传输数据 json 进行序列化和反序列化操作,以保证对数据的完整性和有效性,而序列化和反序列化其实就是编码和解码的过程。
pickle
Python 对象序列化库。 pickle 库支持对 python 对象进行序列化和反序列化操作,当我们需要将处理好的对象保存到文件或数据库中时,就可以将其序列化成二进制数据,从而更好的保存起来。
shelve
Python 对象持久化。简单的数据存储方案。
socket
底层网络接口。 socket(套接字) 库提供了标准的BSD(伯克利套接字) Socket API,可以通过访问底层操作系统 Socket 的相关接口进行网络通讯。
datetime
基本日期和时间类型库。该库提供了各种简单和复杂的方式处理日期和时间,日常我们会用时间测算时间消耗、复杂度,对存储的创建时间和修改时间也需要进一步说明,对计时器的描述和控制也需要用到该库。
hashlib
安全哈希和消息摘要。摘要算法 其实就是对某些数据进行加密(不可逆的加密算法),因为被加密的数据无法破解,所以就能防止被篡改。常见的摘要算法有 MD5、SHA1,一般我们会用 MD5 对用户口令进行加密,防止盗用后被轻易破解;而 SHA1 与 MD5 类似,但是 SHA1 会产生更长的长度,也更安全,但是算法的复杂性通常伴随着存储空间和时间的消耗。要说比SHA1更长的字符长度,还有 SHA224、SHA256、SHA384 和 SHA512,看名字就能知道。
大家都知道无论算法生成的字符长度如何都有可能发生碰撞(被破解),这是不可避免的,所以具体场景具体情况而定。
configparser
配置文件解析器。 configparser 库可以轻松定制配置文件,通过解析配置文件的信息我们就可以全局访问相关配置。
urllib
URL 处理模块。 urllib 库集成了处理 URLs(统一资源定位符)的各种模块:
URL urllib.request URL robots.txt urllib 库对访问网络有很好的支持,提供了对数据的访问和处理、文件的上传和下载、记录 cookie 和 session 等等。
itertools
为高效循环而创建迭代器的函数。 itertools 库也是经常需要用到,当我们要对某些数进行 for-in 时就需要先将其处理成一个可迭代对象,之后我们才能进行遍历操作。
collections
容器数据类型库。 collections 库提供了对所有容器数据类型的支持,包括 dict, list, set 和 tuple。我们可以用此库对不同数据类型进行操作,常有的函数方法有这些:
namedtuple() 创建命名元组子类的工厂函数 deque 类似列表(list)的容器,实现了在两端快速添加(append)和弹出(pop) ChainMap 类似字典(dict)的容器类,将多个映射集合到一个视图里面 Counter 字典的子类,提供了可哈希对象的计数功能 OrderedDict 字典的子类,保存了他们被添加的顺序 defaultdict 字典的子类,提供了一个工厂函数,为字典查询提供一个默认值 UserDict 封装了字典对象,简化了字典子类化 UserList 封装了列表对象,简化了列表子类化 UserString 封装了列表对象,简化了字符串子类化 functools
高阶函数和可调用对象上的操作。该库主要调用高阶函数,是常规函数的一种补充。目前库中包含以下几种函数:
cmp_to_key lru_cache total_ordering partial partialmethod rece singledispatch update_wrapper wraps threading
线程并行库。 threading 库支持线程和多线程的操作,针对多线程并发的问题可以给数据加同步锁,一次只能让一个线程处理数据,从而避免出现数据读写混乱。
在 CPython 解释器上,因为GIL(全局解释器锁)锁机制的存在的,被设计成线程安全,所以同一时间只能执行一个线程,这就导致了多线程不能发挥出计算机的多核特性。
multiprocessing
进程并行库。 multiprocessing 库与 threading 库很类似,不同的是进程库可以创建子进程避开 GIL,从而弥补线程库存在的劣势和发挥计算机的多核特性。
timeit
测量小代码片段的执行时间。此库主要用来计算运行代码的时间消耗,支持多种方式传入参数。
atexit
退出处理器。当处理一个函数需要立马退出时可以使用该库。
abc
抽象基类。 abc 库定义抽象基类,以便其他类派生出新类。比如 collections 容器库中就有此派生出的 collections.abc 类,派生出来的类可以进一步实现。
asyncio
异步IO库。 asyncio 库是一个用 async/await 关键字编写并发的库,为多个异步框架提供基础功能,能够实现高性能的网络、Web服务器、数据库连接和分布式任务队列等。

浅层和深层复制操作。 库提供对对象的拷贝,我们都知道要制作对象副本,是无法通过简单值传递创建新变量的方式做到,因为新变量所指向的内存空间依旧是原对象本身,所以对新变量进行任何操作都会改变原对象。那么, 库就提供了制作对象副本的各种方法,会开辟一个新的内存空间存放副本对象,修改操作不会对原对象有任何干预。
csv
csv(Comma Separated Values)文件读写库。此库支持以纯文本的形式存储表格数据(数字和文本)。
operator
标准运算符替代函数库。此库是将 python 自有的运算符作为有效函数,比如表达式 x+y 可以用函数 operator.add(x, y) 表示;比如表达式 a*b 可以用函数 operator.mul(a, b) 表示,等等。
enum
枚举库。 enum 库支持创建枚举类来存储大量同类型的不可变常量,以便其他函数调用。创建出来的枚举类是可迭代对象,所以可以用 for-in 枚举出所有常量。
heapq
堆队列算法。这个模块提供了堆队列算法的实现,也称为优先队列算法。优先队列中的每个元素都有各自的优先级,优先级最高的元素最先得到服务。所以当我们要求前n最大/最小值的时候就可以用此算法来实现, heapq 库中也提供了相应函数实现。
http
HTTP 模块。 http 模块是一个包,收集了多个处理超文本传输协议的模块:
urllib.request http 模块通过 http.HTTPStatus 枚举定义了HTTP状态码 以及相关联消息。
profile、pstats
性能分析工具。 profile 模块提供了 profile 和 cProfile 两种不同实现的性能分析工具,可用来描述程序各个部分的执行时间和频率,统计后的信息可以通过 pstats 模块保存并使用。
ssl
TLS/SSL(传输安全协议)。此模块提供对安全协议的支持,通过应用上下文,可将 TLS(传输层安全性协议)或其前身 SSL(安全套接层)支持安全协议,能为互联网通信提供安全和数据完整性保障。一般 HTTPS 协议都支持 TLS/SSL 加密。
unitest
单元测试框架。 unitest 库常用于单元测试,受到 JUnit 和其他主流测试库的启发, unitest 库的功能和函数与它们有着相似的风格。
uuid
UUID库。 uuid 库主要用途是生成随机字符串,库中有多个版本的 UUID 对象方法,比如版本 1、3、4 和 5 的 uuid1() 、 uuid3() 、 uuid4() 和 uuid5() 。需要注意的是,如果要生成随机字符串,可以使用 uuid1() 和 uuid4() ,但是 uuid1() 会存在隐私风险,因为生成的原理里边包含用户访问计算机的网络地址,而 uuid4() 是通过随机字符生成。
希望可以帮助到你。

❸ python的库怎么写的

库包括了一些常量,函数方法,以及类
比如说你要做一个叫做修理工具的库
这个库里就要有一些常用的手动工具,扳手,螺丝刀之类的。这相当于常量
然后还要有一些电动工具,手电转之类的。函数方法。
最后还不能少的就是说明书。没有说明搞修理,那是丈二和尚摸不着头脑。这个相当于类。
然后造一个维修间。把这些手动工具,电动工具,图纸说明说都找地方放好。
不可缺少的还有一个工作台。 有了这些库就成功构造好了。
需要用什么就到库里去拿。
python的库实际就是一个文件目录,在这个目录中包含了库的初始化文件,以及包含各种常量,方法,类的文件。最后还要设置python的环境变量,让python能够找到库在哪里。

❹ Python标准库和第三方库有什么区别

它们的主要区别是:

1、Python的标准库是随着pyhon安装的时候默认自带的库;

2、python的第三方库,需要下载后安装到python的安装目录下。不同的第三方库安装及使用方法不同。

3、它们调用方式是一样的,都需要用import语句调用。简单的说,一个是默认自带不需要下载安装的库,一个是需要下载安装的库。它们的调用方式是一样的。

Python 程序由模块组成。一个模块对应python 源文件,一般后缀名是:.py。
模块由语句组成。运行Python 程序时,按照模块中语句的顺序依次执行。
语句是Python 程序的构造单元,用于创建对象、变量赋值、调用函数、控制语句等。
2 标准库模块(standard library)
与函数类似,模块也分为标准库模块和用户自定义模块。
Python 标准库提供了操作系统功能、网络通信、文本处理、文件处理、数学运算等基本的功能。比如:random(随机数)、math(数学运算)、time(时间处理)、file(文件处理)、os(和操作系统交互)、sys(和解释器交互)等。
另外,Python 还提供了海量的第三方模块,使用方式和标准库类似。功能覆盖了我们能想象到的所有领域,比如:科学计算、WEB 开发、大数据、人工智能、图形系统等。

3 为什么需要模块化编程
模块(mole)对应于Python 源代码文件(.py 文件)。模块中可以定义变量、函数、类、普通语句。这样,我们可以将一个Python 程序分解成多个模块,便于后期的重复应用。
模块化编程(Molar Programming)将一个任务分解成多个模块。每个模块就像一个积木一样,便于后期的反复使用、反复搭建。
模块化编程有如下几个重要优势:

便于将一个任务分解成多个模块,实现团队协同开发,完成大规模程序
实现代码复用。一个模块实现后,可以被反复调用。
可维护性增强。

❺ python中的库是什么意思

初学python的小伙伴一定遇到这样一个问题,python模块,python包,python库...感觉被绕晕了,今天说一说python中的模块,库,包有什么区别。
1.python模块是:
python模块:包含并且有组织的代码片段为模块。
表现形式为:写的代码保存为文件。这个文件就是一个模块。sample.py 其中文件名smaple为模块名字。
关系图:
2.python包是:
包是一个有层次的文件目录结构,它定义了由n个模块或n个子包组成的python应用程序执行环境。通俗一点:包是一个包含__init__.py 文件的目录,该目录下一定得有这个__init__.py文件和其它模块或子包。
常见问题:
引入某一特定路径下的模块
使用sys.path.append(yourmolepath)
将一个路径加入到python系统路径下,避免每次通过代码指定路径
利用系统环境变量 export PYTHONPATH=$PYTHONPATH:yourmolepath,
直接将这个路径链接到类似/Library/Python/2.7/site-packages目录下
好的建议:
经常使用if __name__ == '__main__',保证写包既可以import又可以独立运行,用于test。
多次import不会多次执行模块,只会执行一次。可以使用reload来强制运行模块,但不提倡。
常见的包结构如下:
package_a├── __init__.py├── mole_a1.py└── mole_a2.pypackage_b├── __init__.py├── mole_b1.py└── mole_b2.py
main.py
如果main.py想要引用packagea中的模块molea1,可以使用:
from package_a import mole_a1
import package_a.mole_a1
如果packagea中的molea1需要引用packageb,那么默认情况下,python是找不到packageb。我们可以使用sys.path.append('../'),可以在packagea中的__init__.py添加这句话,然后该包下得所有mole都添加* import __init_即可。
关系图:
3、库(pbrary)
库的概念是具有相关功能模块的集合。这也是Python的一大特色之一,即具有强大的标准库、第三方库以及自定义模块。以上就是小编分享的关于python中的库是什么意思的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!

❻ 如何查python中的一些库函数呢

最简单的就是直接到python官网查看文档了

python2: https://docs.python.org/2/library/index.html

python3: https://docs.python.org/3/library/index.html


如果再离线的情况下使用help函数也可以:

>>>importre
>>>help(re)

如果解决了您的问题请采纳!
如果未解决请继续追问

阅读全文

与python的库相关的资料

热点内容
压缩因子定义 浏览:968
cd命令进不了c盘怎么办 浏览:214
药业公司招程序员吗 浏览:974
毛选pdf 浏览:659
linuxexecl函数 浏览:727
程序员异地恋结果 浏览:374
剖切的命令 浏览:229
干什么可以赚钱开我的世界服务器 浏览:290
php备案号 浏览:990
php视频水印 浏览:167
怎么追程序员的女生 浏览:487
空调外压缩机电容 浏览:79
怎么将安卓变成win 浏览:459
手机文件管理在哪儿新建文件夹 浏览:724
加密ts视频怎么合并 浏览:775
php如何写app接口 浏览:804
宇宙的琴弦pdf 浏览:396
js项目提成计算器程序员 浏览:944
pdf光子 浏览:834
自拍软件文件夹名称大全 浏览:328