1. python 用什么来开发工具
(一)github
Git是一个分布式的版本控制系统,最初由Linus Torvalds编写,用作linux内核代码的管理。在推出后,Git在其它项目中也取得了很大成功,尤其是在Ruby社区中。目前,包括Rubinius、Merb和Bitcoin在内的很多知名项目都使用了Git。Git同样可以被诸如Capistrano和Vlad the Deployer这样的部署工具所使用。
(二)Vim
Vim 是高级文本编辑器,旨在提供实际的 Unix 编辑器‘Vi’功能,支持更多更完善的特性集。Vim 不需要花费太多的学习时间,一旦你需要一个无缝的编程体验,那么就会把 Vim 集成到你的工作流中。
(三)Eclipse with PyDev
Eclipse 是非常流行的 IDE,而且已经有了很久的历史。Eclipse with Pydev 允许开发者创建有用和交互式的 Web 应用。PyDev 是 Eclipse 开发 Python 的 IDE,支持 Python,Jython和 IronPython 的开发。
(四)Sublime Text
Sublime Text 是开发者中最流行的编辑器之一,多功能,支持多种语言,而且在开发者社区非常受欢迎。Sublime 有自己的包管理器,开发者可以使用TA来安装组件,插件和额外的样式,所有这些都能提升你的编码体验。
2. 开发Python用哪些工具好
刚学python时,面对简陋的官方版idle和一大堆开发平台和发行版,不知道究竟如何下手。在进行多方尝试后,我最后的选择是Anaconda + Pycharm,用anaconda集成的ipython做工作台,做一些分析和小段程序调试的工作,用Pycharm写相应脚本和程序包的开发。这两个工具都是跨平台的,也都有免费版本。
具体来说Anaconda集成了几乎所有我需要的包库,包含了我整个工作流程,做数据分析的pandas\scipy\numpy、绘图的matplotlib、读写Excel文档的xlrd/xlwt,链接SQL数据库的SQLalchemy、机器学习框架sklearn等。对于Anaconda集成的两个工作平台,Spyder——一个类似于Matlab和Rstudio的IDE,是专注于面向数据的分析的,因为其特点也主要是数据区的存在,可以即时知道变量值的变化;Ipython——一个基于cell的shell界面,可以理解为python自带shell的增强版,它将程序分成一块一块的cell,每个cell可以包含多条语句,可以单独调试运行,并将结果保存在内存中,cell之间可以相互调用,并保持一定的相互独立。
3. python工具有哪些
第一款:最强终端 Upterm
它是一个全平台的终端,可以说是终端里的IDE,有着强大的自动补全功能,之前的名字叫作:BlackWindow。有人跟他说这个名字不利于社区推广,改名叫Upterm之后现在已经17000+Star了。
第二款:交互式解释器 PtPython
一个交互式的Python解释器,支持语法高亮、提示,甚至是VIM和emacs的键入模式。
第三款:包管理必备 Anaconda
强烈推荐:Anaconda。它能帮你安装许多麻烦的东西,包括:Python环境、pip包管理工具、常用的库、配置好环境路径等等。这些小事情小白自己一个个去做的话,容易遇到各种问题,也容易造成挫败感。如果你想用Python搞数据方面的事情,安装它就可以了,它甚至开发了一套JIT的解释器Numba。所以Anaconda有了JIT之后,对线上科学计算效率要求比较高的东西也可以搞定了。
第四款:编辑器 Sublime3
如果你是小白的话,推荐从PyCharm开始上手,但是有时候写一些轻量的小脚本,就会想到轻量级一点的工具。Sublime3很多地方都有了极大的提升,并且用起来比原来还要简单,配合安装Anaconda或CodeIntel插件,可以让Sublime3拥有近乎IDE的体验。
第五款:前端在线编辑器 CodeSandbox
虽然这个不算是真正意义上的Python开发工具,但如果后端工程师想要写前端的话,这个在线编辑器太方便了,节省了后端工程师的生命。不用安装npm的几千个包了,它已经在云端完成了,才让你直接就可以上手写代码、看效果。对于React、Vue这些主流前端框架都支持。
第六款:Python Tutor
Python
Tutor是一个免费教育工具,可帮助学生攻克编程学习中的基础障碍,理解每一行源代码在程序执行时在计算机中的过程。通过这个工具,教师或学生可以直接在web浏览器中编写Python代码,并逐步可视化地运行程序。
第七款:IPython
如何进行交互式编程?没错,就是通过IPython。IPython相对于Python自带的shell要好用的多,并且能够支持代码缩进、TAB键补全代码等功能。如果进行交互式编程,这是不可缺少的工具。
第八款:Jupyter Notebook
Jupyter
Notebook就像一个草稿本,能将文本注释、数学方程、代码和可视化内容全部组合到一个易于共享的文档中,以Web页面的方式展示,它是数据分析、机器学习的必备工具。
第九款:Pycharm
Pycharm是程序员常常使用的开发工具,简单、易用,并且能够设置不同的主题模式,根据自己的喜好来设置代码风格。
第十款:Python Tutor
这个工具可能对初学者比较有用,而对于中高级程序员则用处较少。这个工具的特色是能够清楚的理解每一行代码是如何在计算机中执行的,中高级程序员一般通过分步调试可以实现类似的功能。这个工具对于最初接触Python、最初来学习编程的同学还是非常有用的,初学者可以体验一下。
4. 有哪些值得推荐的 Python 开发工具
第一种:PTVS,一个在github上的开源项目
PTVS在 IronPython Tools for Visual
Studio的代码基础上进行了增强并添加了对Cython、集群的支持,以及诸如Numpy和Scipy这样的新模块。
第二种:Eclipse,跨平台的自由集成开发环境
主要用来java语言开发,但也可以通过插件使其成为其他计算机编程语言的开发工具,比如Python、C++等。
Eclipse最初是由IBM公司开发的替代商业软件Visual Age for
java的下一代IDE开发环境,2001年贡献给开源社区,由非营利软件供应商联盟Eclipse基金会管理。
第三种:PyCharm,由JetBrains打造的一款Python IDE
PyCharm是一种Python IDE(Integrated Development
Environment,集成开发环境),带有一整套可以帮助用户在使用Python语言开发时提高其效率的工具,比如调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试、版本控制。此外,该IDE提供了一些高级功能,以用于支持Django框架下的专业Web开发。
第四种:IPython,是一个交互式计算系统
IPython是Python的原生交互式shell的增强版,可以完成许多不同寻常的任务,比如帮助实现并行化计算;主要使用它提供的交互性帮助,比如代码着色、改进了命令行回调、制表符完成、宏功能以及改进了交互式帮助。
第五种:Eric5,一个集成了项目管理功能的 Python 集成开发环境
Eric5提供无限制数量的编辑器、集成的Python shell、集成调试器、集成对包括 Subversion 和
Mercurial版本控制系统的支持,集成单元测试等。
5. python集成开发工具有哪些
一般用pycharm,是收费的,不过你懂得~
免费的可以用eclipse+pydev
6. python的开发工具是什么
wingide 挺好的,调试非常方便,提示功能也狠强大。
7. 想自己学习Python开发。使用什么开发工具好一些呢
如果想写python的程序,至少需要安装一个python 的解释器。用来解释python的程序文件。
编辑器的话,没有谁好谁好,主要还是看个人的喜好,比较主流的几下几个。
1. pycharm:这是一个集成化开发工具,集编辑运行一体,比较方便。但是软件收费,可以下载社区版初期学习使用
2. sublime text:比较好用的轻量级文本编辑工具。需要配合解释器开发
3. vim编辑器:linux 或mac 系统下的命令行界面的文本编辑工具,也可以编写程序。需要对系统有所了解才能上手。
4. 其它文本编辑工具
如果想学习Python,可以看看黑马程序员的学习视频啊,有600集的那个很好自学哦~欢迎你采纳我的回答
8. python初学者工具用什么工具好呢
Python开发软件可根据其用途不同分为两种,一种是Python代码编辑器,一种是Python集成开发工具,两者的配合使用可以极大的提高Python开发人员的编程效率,以下是常用的几款Python代码编辑器和Python集成开发工具。
一、Python代码编辑器
1. Sublime Text
Sublime Text是一款非常流行的代码编辑器,支持Python代码编辑,同时兼容所有平台,并且丰富的插件扩展了语法和编辑功能,迅捷小巧,具有良好的兼容性,很受编程人士的喜爱!
2. Vim
Vim和Vi是一种模型编辑器,它将文本查看从文本编辑中分离,VIM在原始VI之上做了诸多改进,包括可扩展模型和就地代码构建,VIMScripts可用于各种Python开发任务!
3. Atom
Atom被称为“21世纪可破解的文本编辑器”,可以兼容所有平台,拥有时尚的界面、文件系统浏览器和扩展插件市场,使用Electron构建,其运行时安装的扩展插件可支持Python语言!
4. GNU Emacs
GNU Emacs是一款终身免费且兼容任何平台的代码编辑器,使用强大的Lisp编程语言进行定制,并为Python开发提供各种定制脚本,是一款可扩展、可定制、自动记录、实时显示的编辑器,一直萦绕在UNIX周围。
5. Visual Studio Code
Visual Studio Code是一款兼容Linux、Mac OS X和Windows 平台的全功能代码编辑器,可扩展并且可以对几乎所有任务进行配置,对于Python的支持可以在Visual Studio Code中安装插件,只需快速点击按钮即可成功安装,且可自动识别Python安装和库。
二、Python集成开发环境
1. PyCharm
PyCharm是唯一一款专门面向Python的全功能集成开发环境,同样拥有付费版和免费开源版,PyCharm不论是在Windows、 Mac OS X系统中,还是在Linux系统中都支持快速安装和使用。
PyCharm直接支持Python开发环境,打开一个新的文件然后就可以开始编写代码,也可以在PyCharm中直接运行和调试Python程序,它还支持源码管理和项目,并且其拥有众多便利和支持社区,能够快速掌握学习使用!
2. Eclipse + PyDev
PyDev是Eclipse集成开发环境的一个插件,支持Python调试、代码补全和交互式Python控制台等,在Eclipse中安装PyDev非常便捷,只需从Eclipse中选择“Help”点击“Eclipse Marketplace”然后搜索PyDev,点击安装,必要的时候重启Eclipse即可,对于资深Eclipse开发者来说,PyDev可以很轻松上手!
3. Visual Studio
Visual Studio是一款全功能集成开发平台,提供了免费版和付费版,可以支持各种平台的开发,且附带了自己的扩展插件市场。在Visual Studio中可进行Python编程,并且支持Python智能感知、调试和其他工具,值得注意的是Visual Studio不支持Linux平台!
4. Spyder
Spyder是一款为了数据科学工作流做了优化的开源Python集成开发环境,它是附在Anaconda软件包管理器发行版中的,Spyder拥有大部分集成开发环境该具备的功能,如强大语法高亮功能的代码编辑器、Python代码补全以及集成文件浏览器,其还具有其他Python编辑环境中所不具备的变量浏览器功能,十分适合使用Python的数据科学家们。
5. Thonny
Thonny是针对新手的一款集成开发环境,适用于全部主流平台,默认情况下,Thonny会和自带捆绑的Python版本一起安装,十分方便新手使用!
9. 学习Python,开发工具我们应该如何选择
那个顺手用哪个,我目前使用的是pycharm
10. python有哪些开发工具
想要学会python,不仅要学习相关的基础知识和教程,对python各种工具的熟悉使用才能让你在工作中迅速成长!有很多优秀的开发者前辈,为我们提供了好用的python工具,来帮我们更方便的实现开发想法,下面就给大家分享5个好用的python开发工具!
工具一:Anaconda
这个工具就是用来解决Python 开发过程中遇到各种包管理和版本的问题,为了解决很多 Windows 平台的安装包无法正常使用,必须要有Anoconda,它包含了一个包管理工具、一个Python管理环境和常用数据科学包,是数据分析的标配!
工具二:Skulpt
这个工具是用 Javascript 实现在线 Python 执行环境,实现了在浏览器中轻松运行 Python 代码。搭配使用CodeMirror 编辑器就类似于一个基本的在线Python编辑&运行环境。
工具三:Python Tutor
这款工具是由 Philip Guo 开发的免费教育工具,适用于python小白,能够帮助小白解决一些编程学习中的基础障碍,还能帮助小白理解每一行源代码在程序执行时在计算机中的过程。
大部分被教师或学生使用,但也适用于python小白,可以直接在 Web 浏览器中编写 Python 代码,可以把不知道如何在内存中如何运行的代码,拷贝到Tutor里进行可视化执行,有助于小白对基础的扎实掌握。
工具四:IPython
这款工具是for Humans 的 Python 交互式解释器,功能非常强大,能够支持变量自动补全,自动缩进,支持 bash shell 命令,内置了许多实用功能和函数,同时它也是科学计算和交互可视化的最佳平台。
它还具有以下特性:
·更强的交互 shell(基于 Qt 的终端);
·一个基于浏览器的记事本,支持代码,纯文本,数学公式,内置图表和其他富媒体;
·支持交互数据可视化和图形界面工具;
·灵活,可嵌入解释器加载到任意一个自有工程里;
·简单易用,用于并行计算的高性能工具。
工具五:Jupyter Notebook
看名字就知道Notebook,这款工具就像一个草稿本,能储存文本注释、数学方程、代码和可视化内容等,然后以 Web 的方式呈现。有数据分析、机器学习需求同学的必备工具。
python学习网,大量的免费python视频教程,欢迎在线学习!