导航:首页 > 编程语言 > python排序

python排序

发布时间:2022-01-24 08:25:43

python对列表里的元素进行排序

l=['e','d','c','b','a']
l.sort()
print(l)
e=list(enumerate(l))
print(e)

❷ python 排序,sort和sorted的区别是什么

sort是一个值或变量等的一个树形,对自己的值进行排序。

a
=
[1,3,5,7,4,2]
a.sort()之后,再print
a
就会发现a的值已经被排序了。[1,2,3,4,5,7]
sorted是一个命令,可以对任何integer排序。

a
=
[2,4,6,8,3,2,1]
sorted(a),输出的就是
[1,2,2,3,4,6,8],可以把他赋给变量b,b
=
sorted(a),这样b就有值了。
再如b
=
sorted('cdefgab'),print
b输出
[a,b,c,d,e,f,g]
b
=
sorted('456321')
,
print
b输出
[1,2,3,4,5,6]

❸ python 排序

a = ['1;2;3', '1;1', '1;2']
b = sorted(a)
print(b)

❹ python字母顺序排序

❺ python排序!

方法1.用List的内建函数list.sort进行排序
list.sort(func=None, key=None, reverse=False)
Python实例:

>>> list = [2,5,8,9,3]
>>> list
[2,5,8,9,3]
>>> list.sort()
>>> list
[2, 3, 5, 8, 9]
方法2.用序列类型函数sorted(list)进行排序(从2.4开始)
Python实例:

>>> list = [2,5,8,9,3]
>>> list
[2,5,8,9,3]
>>> sorted(list)
[2, 3, 5, 8, 9]
两种方法的区别:
sorted(list)返回一个对象,可以用作表达式。原来的list不变,生成一个新的排好序的list对象。
list.sort() 不会返回对象,改变原有的list。
其他sort的实例:
实例1:正向排序

>>>L = [2,3,1,4]
>>>L.sort()
>>>L
>>>[1,2,3,4]
实例2:反向排序

>>>L = [2,3,1,4]
>>>L.sort(reverse=True)
>>>L
>>>[4,3,2,1]
实例3:对第二个关键字排序

>>>L = [('b',6),('a',1),('c',3),('d',4)]
>>>L.sort(lambda x,y:cmp(x[1],y[1]))
>>>L
>>>[('a', 1), ('c', 3), ('d', 4), ('b', 6)]
实例4: 对第二个关键字排序

>>>L = [('b',6),('a',1),('c',3),('d',4)]
>>>L.sort(key=lambda x:x[1])
>>>L
>>>[('a', 1), ('c', 3), ('d', 4), ('b', 6)]
实例5: 对第二个关键字排序

>>>L = [('b',2),('a',1),('c',3),('d',4)]
>>>import operator
>>>L.sort(key=operator.itemgetter(1))
>>>L
>>>[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
实例6:(DSU方法:Decorate-Sort-Undercorate)

>>>L = [('b',2),('a',1),('c',3),('d',4)]
>>>A = [(x[1],i,x) for i,x in enumerate(L)] #i can confirm the stable sort
>>>A.sort()
>>>L = [s[2] for s in A]
>>>L
>>>[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
以上给出了6中对List排序的方法,其中实例3.4.5.6能起到对以List item中的某一项
为比较关键字进行排序.
效率比较:
cmp < DSU < key
通过实验比较,方法3比方法6要慢,方法6比方法4要慢,方法4和方法5基本相当
多关键字比较排序:
实例7:

>>>L = [('d',2),('a',4),('b',3),('c',2)]
>>> L.sort(key=lambda x:x[1])
>>> L
>>>[('d', 2), ('c', 2), ('b', 3), ('a', 4)]
我们看到,此时排序过的L是仅仅按照第二个关键字来排的,
如果我们想用第二个关键字排过序后再用第一个关键字进行排序呢?有两种方法
实例8:

>>> L = [('d',2),('a',4),('b',3),('c',2)]
>>> L.sort(key=lambda x:(x[1],x[0]))
>>> L
>>>[('c', 2), ('d', 2), ('b', 3), ('a', 4)]
实例9:

>>> L = [('d',2),('a',4),('b',3),('c',2)]
>>> L.sort(key=operator.itemgetter(1,0))
>>> L
>>>[('c', 2), ('d', 2), ('b', 3), ('a', 4)]
为什么实例8能够工作呢?原因在于tuple是的比较从左到右比较的,比较完第一个,如果相等,比较第二个

❻ python几种经典排序方法的实现

class SortMethod:
'''
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。
插入算法把要排序的数组分成两部分:
第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置)
第二部分就只包含这一个元素(即待插入元素)。
在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
'''
def insert_sort(lists):
# 插入排序
count = len(lists)
for i in range(1, count):
key = lists[i]
j = i - 1
while j >= 0:
if lists[j] > key:
lists[j + 1] = lists[j]
lists[j] = key
j -= 1
return lists
'''
希尔排序 (Shell Sort) 是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因 DL.Shell 于 1959 年提出而得名。
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至 1 时,整个文件恰被分成一组,算法便终止。
'''
def shell_sort(lists):
# 希尔排序
count = len(lists)
step = 2
group = count / step
while group > 0:
for i in range(0, group):
j = i + group
while j < count:
k = j - group
key = lists[j]
while k >= 0:
if lists[k] > key:
lists[k + group] = lists[k]
lists[k] = key
k -= group
j += group
group /= step
return lists
'''
冒泡排序重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
'''
def bubble_sort(lists):
# 冒泡排序
count = len(lists)
for i in range(0, count):
for j in range(i + 1, count):
if lists[i] > lists[j]:
temp = lists[j]
lists[j] = lists[i]
lists[i] = temp
return lists
'''
快速排序
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列
'''
def quick_sort(lists, left, right):
# 快速排序
if left >= right:
return lists
key = lists[left]
low = left
high = right
while left < right:
while left < right and lists[right] >= key:
right -= 1
lists[left] = lists[right]
while left < right and lists[left] <= key:
left += 1
lists[right] = lists[left]
lists[right] = key
quick_sort(lists, low, left - 1)
quick_sort(lists, left + 1, high)
return lists
'''
直接选择排序
第 1 趟,在待排序记录 r[1] ~ r[n] 中选出最小的记录,将它与 r[1] 交换;
第 2 趟,在待排序记录 r[2] ~ r[n] 中选出最小的记录,将它与 r[2] 交换;
以此类推,第 i 趟在待排序记录 r[i] ~ r[n] 中选出最小的记录,将它与 r[i] 交换,使有序序列不断增长直到全部排序完毕。
'''
def select_sort(lists):
# 选择排序
count = len(lists)
for i in range(0, count):
min = i
for j in range(i + 1, count):
if lists[min] > lists[j]:
min = j
temp = lists[min]
lists[min] = lists[i]
lists[i] = temp
return lists
'''
堆排序 (Heapsort) 是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。
可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即 A[PARENT[i]] >= A[i]。
在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
'''
# 调整堆
def adjust_heap(lists, i, size):
lchild = 2 * i + 1
rchild = 2 * i + 2
max = i
if i < size / 2:
if lchild < size and lists[lchild] > lists[max]:
max = lchild
if rchild < size and lists[rchild] > lists[max]:
max = rchild
if max != i:
lists[max], lists[i] = lists[i], lists[max]
adjust_heap(lists, max, size)
# 创建堆
def build_heap(lists, size):
for i in range(0, (size/2))[::-1]:
adjust_heap(lists, i, size)
# 堆排序
def heap_sort(lists):
size = len(lists)
build_heap(lists, size)
for i in range(0, size)[::-1]:
lists[0], lists[i] = lists[i], lists[0]
adjust_heap(lists, 0, i)
'''
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法 (Divide and Conquer) 的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并过程为:
比较 a[i] 和 a[j] 的大小,若 a[i]≤a[j],则将第一个有序表中的元素 a[i] 复制到 r[k] 中,并令 i 和 k 分别加上 1;
否则将第二个有序表中的元素 a[j] 复制到 r[k] 中,并令 j 和 k 分别加上 1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到 r 中从下标 k 到下标 t 的单元。归并排序的算法我们通常用递归实现,先把待排序区间 [s,t] 以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间 [s,t]。
'''
def merge(left, right):
i, j = 0, 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
return result
def merge_sort(lists):
# 归并排序
if len(lists) <= 1:
return lists
num = len(lists) / 2
left = merge_sort(lists[:num])
right = merge_sort(lists[num:])
return merge(left, right)
'''
基数排序 (radix sort) 属于“分配式排序” (distribution sort),又称“桶子法” (bucket sort) 或 bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,借以达到排序的作用,基数排序法是属于稳定性的排序。
其时间复杂度为 O (nlog(r)m),其中 r 为所采取的基数,而 m 为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
'''
import math
def radix_sort(lists, radix=10):
k = int(math.ceil(math.log(max(lists), radix)))
bucket = [[] for i in range(radix)]
for i in range(1, k+1):
for j in lists:
bucket[j/(radix**(i-1)) % (radix**i)].append(j)
del lists[:]
for z in bucket:
lists += z
del z[:]
return lists
---------------------
作者:CRazyDOgen
来源:CSDN
原文:https://blog.csdn.net/jipang6225/article/details/79975312
版权声明:本文为博主原创文章,转载请附上博文链接!

❼ 在Python 3 中的自定义排序怎么办

python3 sorted取消了对cmp的支持。
python3 帮助文档:
sorted(iterable, key=None, reverse=False)

❽ python排序问题

s = [9, 2, -4, 7, -1, 0, 5, -2, -5]
def sort_abs(s):
s2 = []
for i in s:
s2.append(abs(i))
s2.sort()
for j in range(len(s2)):
try:
if s2[j] == s2[j + 1]:
s2[j] = -s2[j]
except:
break
return s2
print(s)
print(sort_abs(s))

❾ python sorted怎么降序排序

1、首先打开cmd命令提示符,输入指令“ipython”打开python的命令行工具:

❿ python列表排序方法

列表的sort方法就是用来进行排序的。

主要就是两个参数,key,reverse


先说reverse,这个很简单,就是指出是否进行倒序排序:一般情况下,1排在2的前面,而倒序则相反。


key参数:一般它是一个函数,它接受列表中每一个元素,返回一个可用用于比较的值。

s=[1,2,3,4,5]

s.sort(key=lambda _: _**2%7)

print(s)

输出的是:[1, 3, 4, 2, 5]

如果看不懂lambda表达式,可以看这一段等价的写法:

def myfn(x):

....return (x * x) % 7


s=[1,2,3,4,5]

s.sort(key=myfn)

print(s)

输出的结果是一样的。

key使用的函数可以是自定义函数也可以pytho内置的函数,或者是某个类或者实例的方法,只要它能接受一个参数,返回一个可比较的值即可。比如这样:

s=[[1,2,4],[3,3,5],[1,1,1],[5,7,9]]

s.sort(key=max) # 直接使用max函数作为排序依据

print(s)

[[1, 1, 1], [1, 2, 4], [3, 3, 5], [5, 7, 9]]


阅读全文

与python排序相关的资料

热点内容
在哪里可以找到旧版本的app 浏览:370
一个客户端如何连接多个服务器 浏览:878
短信加密的作用 浏览:106
微型高压空气压缩机 浏览:518
微信app如何翻译视频 浏览:858
考试前听什么歌解压 浏览:473
哪个app充值可以用银联二维码 浏览:563
女程序员和孩子玩 浏览:837
程序员苏州武汉 浏览:754
大脚插件如何切换安卓 浏览:941
python课设制作年历 浏览:405
明文在pdf 浏览:750
郑永令pdf 浏览:122
cad命令行坐标输入 浏览:781
编译原理csdn博客 浏览:194
想在深圳买房关注哪个app 浏览:913
国际体验服为什么服务器加载失败 浏览:690
php接口用处 浏览:394
想推广app去哪里找 浏览:258
phpcmysql 浏览:123