导航:首页 > 编程语言 > 医疗图像分割python

医疗图像分割python

发布时间:2022-07-09 19:44:14

python中脑瘤图像分割错误RuntimeError: Exception thrown in SimpleITK ReadImage

有系统启动自动加载的程序的某个文件坏了,无法运行整个程序,直接跳到了文件结束部分。

原因和解决办法:
1-利用工具软件看看启动时自动加载那些程序,把不用的干掉,优化大师等是首选的工具;
2-系统文件损坏,此时只能通过修复系统文件解决。方法:sfc命令,有参数可选:
/SCANNOW 立即扫描所有受保护的系统文件。
/SCANONCE 下次启动时扫描所有受保护的系统文件。
/SCANBOOT 每次启动时扫描所有受保护的系统文件。
/REVERT 将扫描返回到默认设置。
/PURGECACHE 清除文件缓存。
/CACHESIZE=x 设置文件缓存大小。
或者用光盘选择安装系统,然后选择修复系统,按R键修复选择的系统,此时你系统中的已安装程序都会正常保留的,Office、Photo等都会正常不用重新装,Outlook的邮件和帐号也在。但是如果你选择了ESC键全新安装,那么真的是全新安装,所有程序都没了。

㈡ python将图像分割成两半

importos
importre
importsys
importtime
importrandom
#addsystemheadershere...

#导入cv模块
importcv2ascv
#读取图像,支持bmp、jpg、png、tiff等常用格式

height=0
length=0

key=0

picPath="E:\python3.4.0-amd\project\imageProcess\tamamo.jpg"
ifnotos.path.exists(picPath):
print("picturenotexists!exit!")
sys.exit()
srcImage=cv.imread(picPath)
ifsrcImageisNone:
print("readpicturefailed!exit!")
sys.exit()
size=srcImage.shape

height=size[0]
length=size[1]
print("srcImage:height(%u)length(%u)"%(height,length))
#显示原图
#cv.imshow("srcImage",srcImage)

#创建窗口并显示图像
mid=int(length/2)

leftImage=srcImage[0:height,0:mid]
cv.namedWindow("leftImage",cv.WINDOW_NORMAL)
cv.resizeWindow("leftImage",mid,height)
cv.imshow("leftImage",leftImage)

rightIamge=srcImage[0:height,mid:length]
cv.namedWindow("rightIamge",cv.WINDOW_NORMAL)
cv.resizeWindow("rightIamge",mid,height)
cv.imshow("rightIamge",rightIamge)

cv.waitKey(0)
#释放窗口
cv.destroyAllWindows()

㈢ 如何利用 python 深度学习 实现医学图像配准

Python学得倒不用很深,循环跟函数还有类学完就可以搞深度学习了。 新手用深度学习库先跑跑,真要进阶还要修改的话,你会发现瓶颈其实在数学

㈣ python 超像素分割怎么得到超像素点

在python中,使用某些算法将图像分割为多个超像素后,会产生一个与原图同样大小的标签矩阵。如果想要操作其中某个超像素,即某个聚类中的所有点,可以使用

numpy.where(label_mat == label)
其中label_mat是超像素的标签矩阵,label是想要操作超像素的标签值,这样可以返回二个对应标签值的坐标list,分别对应行坐标和列坐标。(这里以2维图像为例,3维的我也没有试过)

进而可以使用坐标来对原图像相应位置的像素点进行处理。

㈤ 常用的十大python图像处理工具

原文标题:10 Python image manipulation tools.
作者 | Parul Pandey
翻译 | 安其罗乔尔、JimmyHua
今天,在我们的世界里充满了数据,图像成为构成这些数据的重要组成部分。但无论是用于何种用途,这些图像都需要进行处理。图像处理就是分析和处理数字图像的过程,主要旨在提高其质量或从中提取一些信息,然后可以将其用于某种用途。
图像处理中的常见任务包括显示图像,基本操作如裁剪、翻转、旋转等,图像分割,分类和特征提取,图像恢复和图像识别。Python成为这种图像处理任务是一个恰当选择,这是因为它作为一种科学编程语言正在日益普及,并且在其生态系统中免费提供许多最先进的图像处理工具供大家使用。
让我们看一下可以用于图像处理任务中的常用 Python 库有哪些吧。

1.scikit-image
scikit-image是一个开源的Python包,适用于numpy数组。它实现了用于研究,教育和工业应用的算法和实用工具。即使是那些刚接触Python生态系统的人,它也是一个相当简单直接的库。此代码是由活跃的志愿者社区编写的,具有高质量和同行评审的性质。
资源
文档里记录了丰富的例子和实际用例,阅读下面的文档:
http://scikit-image.org/docs/stable/user_guide.html
用法
该包作为skimage导入,大多数功能都在子模块中找的到。下面列举一些skimage的例子:
图像过滤

使用match_template函数进行模板匹配

你可以通过此处查看图库找到更多示例。
2. Numpy
Numpy是Python编程的核心库之一,并为数组提供支持。图像本质上是包含数据点像素的标准Numpy数组。因此,我们可以通过使用基本的NumPy操作,例如切片、掩膜和花式索引,来修改图像的像素值。可以使用skimage加载图像并使用matplotlib显示图像。
资源
Numpy的官方文档页面提供了完整的资源和文档列表:
http://www.numpy.org/
用法
使用Numpy来掩膜图像.

3.Scipy
scipy是Python的另一个类似Numpy的核心科学模块,可用于基本的图像操作和处理任务。特别是子模块scipy.ndimage,提供了在n维NumPy数组上操作的函数。该包目前包括线性和非线性滤波,二值形态学,B样条插值和对象测量等功能函数。
资源
有关scipy.ndimage包提供的完整功能列表,请参阅下面的链接:
https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html#correlation-and-convolution
用法
使用SciPy通过高斯滤波器进行模糊:

4. PIL/ Pillow
PIL( Python图像库 )是Python编程语言的一个免费库,它支持打开、操作和保存许多不同的文件格式的图像。然而, 随着2009年的最后一次发布,它的开发停滞不前。但幸运的是还有有Pillow,一个PIL积极开发的且更容易安装的分支,它能运行在所有主要的操作系统,并支持Python3。这个库包含了基本的图像处理功能,包括点运算、使用一组内置卷积核的滤波和色彩空间的转换。
资源
文档中有安装说明,以及涵盖库的每个模块的示例:
https://pillow.readthedocs.io/en/3.1.x/index.html
用法
在 Pillow 中使用 ImageFilter 增强图像:

5. OpenCV-Python
OpenCV( 开源计算机视觉库 )是计算机视觉应用中应用最广泛的库之一 。OpenCV-Python 是OpenCV的python版API。OpenCV-Python的优点不只有高效,这源于它的内部组成是用C/C++编写的,而且它还容易编写和部署(因为前端是用Python包装的)。这使得它成为执行计算密集型计算机视觉程序的一个很好的选择。
资源
OpenCV-Python-Guide指南可以让你使用OpenCV-Python更容易:
https://github.com/abidrahmank/OpenCV2-Python-Tutorials
用法
下面是一个例子,展示了OpenCV-Python使用金字塔方法创建一个名为“Orapple”的新水果图像融合的功能。

6. SimpleCV
SimpleCV 也是一个用于构建计算机视觉应用程序的开源框架。有了它,你就可以访问几个高性能的计算机视觉库,如OpenCV,而且不需要先学习了解位深度、文件格式、颜色空间等。
它的学习曲线大大小于OpenCV,正如它们的口号所说“计算机视觉变得简单”。一些支持SimpleCV的观点有:
即使是初学者也可以编写简单的机器视觉测试摄像机、视频文件、图像和视频流都是可互操作的资源
官方文档非常容易理解,而且有大量的例子和使用案例去学习:
https://simplecv.readthedocs.io/en/latest/
用法

7. Mahotas
Mahotas 是另一个计算机视觉和图像处理的Python库。它包括了传统的图像处理功能例如滤波和形态学操作以及更现代的计算机视觉功能用于特征计算,包括兴趣点检测和局部描述符。该接口是Python语言,适合于快速开发,但是算法是用C语言实现的,并根据速度进行了调优。Mahotas库速度快,代码简洁,甚至具有最小的依赖性。通过原文阅读它们的官方论文以获得更多的了解。
资源
文档包括安装指导,例子,以及一些教程,可以更好的帮助你开始使用mahotas。
https://mahotas.readthedocs.io/en/latest/install.html
用法
Mahotas库依赖于使用简单的代码来完成任务。关于‘Finding Wally’的问题,Mahotas做的很好并且代码量很少。下面是源码
https://mahotas.readthedocs.io/en/latest/wally.html

8. SimpleITK
ITK 或者 Insight Segmentation and Registration Toolkit是一个开源的跨平台系统,为开发人员提供了一套广泛的图像分析软件工具 。其中, SimpleITK是建立在ITK之上的简化层,旨在促进其在快速原型设计、教育、解释语言中的应用。SimpleITK 是一个图像分析工具包,包含大量支持一般过滤操作、图像分割和匹配的组件。SimpleITK本身是用C++写的,但是对于包括Python以内的大部分编程语言都是可用的。
资源
大量的Jupyter Notebooks 表明了SimpleITK在教育和研究领域已经被使用。Notebook展示了用Python和R编程语言使用SimpleITK来进行交互式图像分析。
http://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/
用法
下面的动画是用SimpleITK和Python创建的刚性CT/MR匹配过程的可视化 。点击此处可查看源码!

9. pgmagick
pgmagick是GraphicsMagick库的一个基于python的包装。 GraphicsMagick图像处理系统有时被称为图像处理的瑞士军刀。它提供了一个具有强大且高效的工具和库集合,支持以88种主要格式(包括重要格式,如DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM和TIFF)读取、写入和操作图像。
资源
有一个专门用于PgMagick的Github库 ,其中包含安装和需求说明。还有关于这个的一个详细的用户指导:
https://github.com/hhatto/pgmagick
用法
使用pgmagick可以进行的图像处理活动很少,比如:
图像缩放

边缘提取

10. Pycairo
Pycairo是图像处理库cairo的一组Python捆绑。Cairo是一个用于绘制矢量图形的2D图形库。矢量图形很有趣,因为它们在调整大小或转换时不会失去清晰度 。Pycairo是cairo的一组绑定,可用于从Python调用cairo命令。
资源
Pycairo的GitHub库是一个很好的资源,有关于安装和使用的详细说明。还有一个入门指南,其中有一个关于Pycairo的简短教程。
库:https://github.com/pygobject/pycairo指南:https://pycairo.readthedocs.io/en/latest/tutorial.html用法
使用Pycairo绘制线条、基本形状和径向梯度:

总结
有一些有用且免费的Python图像处理库可以使用,有的是众所周知的,有的可能对你来说是新的,试着多去了解它们。

㈥ python图像处理代码,望大神详细解释。越详细越好

#初始化一个矩形np.max(marks)+1行,3列,默认值为0
colorTab=np.zeros((np.max(marks)+1,3))

#遍历数组,给每行的3列赋值,就是RGB颜色值,8位的
foriinrange(len(colorTab)):
aa=np.random.uniform(0,255)
bb=np.random.uniform(0,255)
cc=np.random.uniform(0,255)
colorTab[i]=np.array([aa,bb,cc],np.uint8)

#初始化另一个跟img图像形状大小一样的图像,一副黑色图像
bgrImage=np.zeros(img.shape,np.uint8)

#遍历marks形状的行列
foriinrange(marks.shape[0]):
forjinrange(marks.shape[1]):

index=marks[i][j]
#判断是不是区域与区域之间的分界,如果是边界(-1),则使用白色显示
ifindex==-1:
bgrImage[i][j]=np.array([255,255,255])#像素点设置位白色
else:
bgrImage[i][j]=colorTab[index]#像素点设置位上边随机生成的颜色值

#显示处理后的图像图像
cv2.imshow('AfterColorFill',bgrImage)
#总结,先生成一个跟marks相同数量的row*col的一张颜色表,然后创建一个跟marks相同大小的一副黑色图像
#最后对黑色图像画出白色边界和内部随机彩色像素值

㈦ 解释图像分割的概念,医学图像分割有什么应用价值

就是将目标特征从背景中分割出来。医学图像分割,可以查看感兴趣的区域,从而忽略不需要的区域的干扰。如看骨折,只需要将骨头所表示的特征图像(一般是一定会度值的一块区域)从背景(如肌肉,另一种灰度值)分割出来,而其它的肌肉等则不显示(为黑色)。可以更有利于医生分析病情而减少误判。

㈧ 如何应用Python处理医学影像学中的DICOM信息

下面Python代码来演示如何编程处理心血管冠脉造影DICOM图像信息。

1. 导入主要框架:SimpleITK、pydicom、PIL、cv2和numpy
import SimpleITK as sitk
from PIL import Image
import pydicom
import numpy as np
import cv2

2. 应用SimpleITK框架来读取DICOM文件的矩阵信息。如果DICOM图像是三维螺旋CT图像,则帧参数则代表CT扫描层数;而如果是造影动态电影图像,则帧参数就是15帧/秒的电影图像帧数。
def loadFile(filename):
ds = sitk.ReadImage(filename)
img_array = sitk.GetArrayFromImage(ds)
frame_num, width, height = img_array.shape
return img_array, frame_num, width, height

3. 应用pydicom来提取患者信息。
def loadFileInformation(filename):
information = {}
ds = pydicom.read_file(filename)
information['PatientID'] = ds.PatientID
information['PatientName'] = ds.PatientName
information['PatientBirthDate'] = ds.PatientBirthDate
information['PatientSex'] = ds.PatientSex
information['StudyID'] = ds.StudyID
information['StudyDate'] = ds.StudyDate
information['StudyTime'] = ds.StudyTime
information['InstitutionName'] = ds.InstitutionName
information['Manufacturer'] = ds.Manufacturer
information['NumberOfFrames'] = ds.NumberOfFrames
return information

4. 应用PIL来检查图像是否被提取。
def showImage(img_array, frame_num = 0):
img_bitmap = Image.fromarray(img_array[frame_num])
return img_bitmap

5. 采用CLAHE (Contrast Limited Adaptive Histogram Equalization)技术来优化图像。
def limitedEqualize(img_array, limit = 4.0):
img_array_list = []
for img in img_array:
clahe = cv2.createCLAHE(clipLimit = limit, tileGridSize = (8,8))
img_array_list.append(clahe.apply(img))
img_array_limited_equalized = np.array(img_array_list)
return img_array_limited_equalized

㈨ unet医学图像分割的国内外发展状况

摘要 医学图像分割技术的发展,是从手工分割到人机式的半自动分割,再逐步发展到全自动分割的过程。手工分割指的是由具有丰富经验的临床医生在原始胶片上直接勾勒出组织的边界,或者是把显示在计算机上的图像通过图像编辑器勾画出组织边界或者感兴趣的区域,手工分割对人的先验知识有很高的要求。随着计算机技术的发展出现了半自动分割技术,该分割技术是将计算机的数据存储和计算功能和医学专家的经验和知识结合起来,运用人机交互的方法来完成图像的分割。全自动分割则是由计算机根据事先编好的算法运行独立自动完成图像的分割全过程。但大部分全自动分割算法的实现复杂,分割结果不理想,且分割的速度和性能也需要提高。28150

阅读全文

与医疗图像分割python相关的资料

热点内容
不能修改的pdf 浏览:736
同城公众源码 浏览:474
一个服务器2个端口怎么映射 浏览:282
java字符串ascii码 浏览:61
台湾云服务器怎么租服务器 浏览:461
旅游手机网站源码 浏览:315
android关联表 浏览:929
安卓导航无声音怎么维修 浏览:322
app怎么装视频 浏览:423
安卓系统下的软件怎么移到桌面 浏览:80
windows拷贝到linux 浏览:755
mdr软件解压和别人不一样 浏览:888
单片机串行通信有什么好处 浏览:324
游戏开发程序员书籍 浏览:848
pdf中图片修改 浏览:275
汇编编译后 浏览:480
php和java整合 浏览:835
js中执行php代码 浏览:447
国产单片机厂商 浏览:62
苹果手机怎么设置不更新app软件 浏览:289