A. 数控加工中心编程怎么编
这是一个比较复杂的过程,一时半刻是讲不完的,涉及到很多方面的机械知识.大概的流程是----对零件工艺性分析、确定工艺路线、进行数学处理、编写程序清单、制作控制介质、进行程序检查、输入程序以及工件试切.
程序编制过程倒是不难,关键在于要对零件进行工艺分析,确定程序的加工合理性.选择合适的刀具,进给量,转速等....
B. 加工中心怎样编程
1、机械产品加工程式很简单,大都用手动编程,电脑编程的话,就复杂了,一般不用电脑编程模具加工程式很多,所以只能电脑编程要编程的话。
2、先将西门子数控编程书,再将代码记牢,理解了,然后自己试着编程及跟现有产品程相对比,这样学的更快。
C. 数控加工中心G81编程格式
其格式为G81X_Y_Z_R_F_。
XY为钻孔的位置;Z为钻孔深度,从R点开始算;R为回归点;F为切削速度;钻浅孔的循环指令为G81。
该循环用作正常钻孔,切削进给按一定的速度钻到底,然后快速移动退回。
G98指的是循环加工完成后刀具回到初始点,G99指的是循环加工完成后刀具回到R点。
数控编程的优缺点:
1、优点
主要用于点位加工(如钻、铰孔)或几何形状简单(如平面、方形槽)零件的加工,计算量小,程序段数有限,编程直观易于实现的情况等。
2、缺点
对于具有空间自由曲面、复杂型腔的零件,刀具轨迹数据计算相当繁琐,工作量大,极易出错,且很难校对,有些甚至根本无法完成。
D. 数控加工中心编程步骤
数控机床程序编制的内容主要包括以下步骤:
一.工艺方案分析确定加工对象是否适合于数控加工(形状较复杂,精度一致要求高),分析哪些部位需要拆铜公!确定碰穿面\擦穿面\分型面等!分析使用的刀具类型和刀具大小!毛坯的选择(对同一批量的毛坯余量和质量应有一定的要求)。工序的划分(尽可能采用一次装夹、集中工序的加工方法)。
二.工序详细设计工件的定位与夹紧。工序划分(先大刀后小刀,先粗后精,先主后次,尽量“少换刀”)。刀具选择。确定使用什么加工方法,设置好切削参数。工艺文件编制工序卡(即程序单),走刀路线示意图。程序单包括:程序名称,刀具型号,加工部位与尺寸,装夹示意图
三.编写数控加工程序用UG设置编出数控机床规定的指令代码(G,S,M)与程序格式。后处理程序,填写程序单。拷贝程序传送到机床, 程序校核与试切。
E. 数控加工中心编程G42G41怎么用
在数控车中:G41为刀具半径左补偿,顺着刀具运动方向看刀具在工件的左侧。G42即为右补偿,顺刀具运动方向看在右侧。编程格式:G41/G42 G01/G00 X(U)_ Z(W)_ (移动的终点作标)。程序输入到机床后还要在参数设定(OFFSET)中的<工具补正>里输入对应刀具<R>下的半径值,在旁边你还可以设制该刀具在X、Z方向的偏置量。最后不要忘记用G40取消刀补说明。
F. 加工中心4轴UG如何编程
加工中心4轴UG的编程方法是:在生成程序的时候选择四周机床,并把主轴的Z轴改成远离直线即可。
数控铣床是一种加工功能很强的数控机床,目前迅速发展起来的加工中心、柔性加工单元等都是在数控铣床、数控镗床的基础上产生的,两者都离不开铣削方式。
由于数控铣削工艺最复杂,需要解决的技术问题也最多,因此,目前人们在研究和开发数控系统及自动编程语言的软件时,也一直把铣削加工作为重点。
加工中心具有适应性强、加工精度高、加工质量稳定和生产效率高等优点。它综合应用了电子计算机、自动控制、伺服驱动、精密测量和新型机械结构等多方面的技术成果,是今后数控机床的发展方向。
(6)数控加工中心主轴自动编程扩展阅读:
对于加工部位是框形平面或不等高的各级台阶,那么选用点位---直线系统的数控铣床即可。如果加工部位是曲面轮廓,应根据曲面的几何形状决定选择两坐标联动和三坐标联动的系统。
也可根据零件加工要求,在一般的数控铣床的基础上,增加数控分度头或数控回转工作台,这时机床的系统为四坐标的数控系统,可以加工螺旋槽、叶片零件等。
对于大批量的,用户可采用专用铣床。如果是中小批量而又是经常周期性重复投产的话,那么采用数控铣床是非常合适的,因为第一批量中准备好多工夹具、程序等可以存储起来重复使用。
G. 三菱数控加工中心主轴定位功能怎么用要用到哪些指令,怎么编程,要注意些什么我是新手
把镗刀装上去,手动旋转一下刀柄,输入M19,你会发现每次主轴都会把刀转到一个固定角度定住,无法手动转动刀具,复位可以取消定位效果。
多点灵活运用你会发现他的好处,主轴定位不止可以作为镗刀退刀方式,也同时可以作为某些工件的定位位置,使工件每次靠在主轴的同一位置等等
H. 数控加工中心自动编程用什么软件好
编程是加工中心作业的第一步,也是支撑一切加工工序的前提。数控技术发展到今天已是非常完备,就加工中心可用的编程软件来说就有许许多多。
1.UG
UG(UnigraphicsNX)是目前使用度最广泛的编程软件之一,是交互式CAD/CAM系统。可以轻松实现各种复杂实体及造型的建构,提供了经过实践验证的解决方案。随着PC技术的发展逐步成为模具行业三维设计的主流应用软件,也是广泛应用于加工中心编程操作中。
UG包括了当今世界上最强大、最广泛的产品设计应用模块。具有高性能的机械设计和制图功能,为制造设计提供了高性能和灵活性,以满足客户设计任何复杂产品的需要。优于通用的设计工具,具有专业的管路和线路设计系统、钣金模块、专用塑料件设计模块和其他行业设计所需的专业应用程序。
2.powermill
powermill是一款功能强大、加工策略丰富的数控加工编程软件系统。可完美应用于全新的中文Windows电脑系统中,从而提高加工效率,减少手工修整,快速产生粗、精加工路径,并且任何方案的修改和重新计算几乎在瞬间完成,具有集成的仿真实体加工。
powermill的使用程度也相当广泛,究其原因其优点是备完整的加工方案,对预备加工模型不需人为干预,对操作者无经验要求,编程人员能轻轻松松完成工作,更专注其他重要事情。此外还可以接受不同软件系统所产生的三维电脑模型,让使用众多不同CAD系统的厂商,不用重覆投资。
3.cimatron
cimatron支持几乎所有当前业界的标准数据信息格式,这些接口包括:IGES、VDA、DXF、STL、Step、RD-PTC、中性格式文件、UG等等。比较适用于模具加工编程中。Cimatron作为一体化的软件,拥有一系列功能强大的塑胶模具和五金模具专用工具,结合并行作业的理念和功能,从整体流程入手,可为型腔模具的设计制造提升效率、缩短制模周期,在编程伊始不论在人力资源还是生产资源上都能大大降低企业成本。
4.Mastercam
Mastercam集二维绘图、三维实体造型、曲面设计、体素拼合、数控编程、刀具路径摸拟及真实感摸拟等多种功能于一身,它具有方便直观的几何造型。Mastercam提供了设计零件外形所需的理想环境,其强大稳定的造型功能可设计出复杂的曲线、曲面零件。
Mastercam9.0以上版本还有支持中文环境,对广大的中小企业来说是理想的选择,是经济有效的全方位的软件系统,是工业界及学校广泛采用的CAD/CAM系统。mastercam也是我国较早引进的数控编程软件,经过长期的市场检验并符合我国制造业加工编程需求。同时Mastercam对系统运行环境要求较低,使用户无论是在造型设计、CNC铣床、cnc加工中心或CNC线切割、金属切削等加工操作中,都能获得最佳效果,在使用广泛程度上和UG不相上下。
给您推荐份资料帮助您了解数控加工中心的编程软件
http://www.skjgzx.org/wenda
I. 通常数控加工中心编程所用到的指令有哪些,到底如何编程,有实例吗
一.G代码(准备功能)
1.1机械坐标系与机械座标点的设定
数控车床
华中世纪星
FANUC
西门子
广东数控
工件坐标系设定
G50
最快速移动
G00
G00
1.1普通加工(直线插补,圆弧插补,车螺纹)
数控车床
华中世纪星
FANUC
西门子
广东数控
直线插补
G01
G01
圆弧插补
G02/G03
G02/G03
车螺纹
G32
1.2固定循环或复合循环
数控车床
华中世纪星
FANUC西门子
广东数控
外圆车销固定循环
G71
端面车销固定循环
G90
螺纹车销固定循环
1.3调用宏程序
数控车床
华中世纪星
FANUC
西门子
广东数控
二.M代码(辅助功能)
2.1主轴正反转与停止
数控车床
华中世纪星
FANUC
西门子
广东数控
横轴Z
众轴X
主轴正转
M03
主轴反转
M04
主轴停止
M05
2.2冷却液开关
数控车床
华中世纪星
FANUC
西门子
广东数控
冷却液开
M07
M08
冷却液关
M09
2.3调用子程序
M98调用子程序
M99子程序结束
数控车床
华中世纪星
FANUC
西门子
广东数控
切刀切槽G75
进给量R
切削速度
F
三.F,S,T的设置
答案补充
楼主可以去这个网站
http://www.cncpop.com/
J. 数控机床的自动编程是怎么实现的
原理
自动编程是借助计算机及其外围设备装置自动完成从零件图构造、零件加工程序编制到控制介质制
作等工作的一种编程方法。它的一般过程:首先将被加工零件的几何图形及有关工艺过程用计算机能够识别的形式输入计算机,利用计算机内的数控编程系统对输入信息进行翻译,形成机内零件的几何数据与拓扑数据;然后进行工艺处理,确定加工方法、加工路线和工艺参数。
通过数学处理计算刀具的运动轨迹,并将其离散成为一系列的刀位数据;根据某一具体数控系统所要求的指令格式,将生成的刀位数据通过后置处理生成最终加工所需的NC指令集;对NC指令集进行校验及修改;通过通讯接口将计算机内的NC指令集送入机床的控制系统。整个数控自动编程系统分为前置处理和后置处理两大模块。
实现自动编程的CAM软件常用的有UG,PRO/E,MASTERCAM,Powermill,CAXA制造工程师等,可以实现多轴联动的自动编程并进行仿真模拟。
(10)数控加工中心主轴自动编程扩展阅读
我国数控加工及编程技术的研究起步较晚,其研究始于航空工业的PCL数控加工自动编程系统SKC一1。在此基础上,以后又发展了SKC-2、SKC-3和CAM251数控加工绘图语言,这些系统没有图形功能,并且以2坐标和2.5坐标加工为主。
我国从“七五”开始有计划有组织地研究和应用CAD/CAM技术,引进成套的CAD/CAM系统,首先应用在大型军工企业,航天航空领域也开始应用,虽然这些软件功能很强,但价格昂贵,难以在我国推广普及。
“八五”又引进了大量的CAD/CAM软件,如:EUCLID-15、UG、CADDS、I-DEAS等,以这些软件为基础,进行了一些二次开发工作,也取得了一些应用成功,但进展比较缓慢。
我国在引用CAD/CAM系统的同时,也开展了自行研制工作。20世纪80年代以后,首先在航空工业开始集成化的数控编程系统的研究和开发工作,如西北工业大学成功研制成功的能进行曲面的3~5轴加工的PNU/GNC图形编程系统。
北京航空航天大学与第二汽车制造厂合作完成的汽车模具、气道内复杂型腔模具的三轴加工软件,与331厂合作进行了发动机叶轮的加工;华中理工大学1989年在微机上开发完成的适用于三维NC加工的软件HZAPT;中京公司和北京航空航天大学合作研制的唐龙CAD/CAM系统,以北京机床所为核心的JCS机床开发的CKT815车削CAD/CAM一体化系统等。
到了20世纪90年代,响应国家开发自主产权的CAD/CAM的号召,开始了自行研制CAD/CAM软件的工作,并取得了一些成果,如:
由北京由清华大学和广东科龙(容声)集团联合研制的高华CAD、由北京北航海尔软件有限公司(原北京航空航天大学华正软件研究所)研制的CAXA电子图板和CAXAME制造工程师、由浙江大天电子信息工程有限公司开发的基于特征的参数化造型系统GSCAD98、由广州红地技术有限公司和北京航空航天大学联合开发的基于STEP标准的CAD/CAM系统金银花。
由华中理工大学机械学院开发的具有自主版权的基于微机平台的CAD和图纸管理软件开目CAD、南京航空航天大学自行研制开发的超人2000CAD/CAM系统等,其中有一些系统已经接近世界水平。虽然我国的数控技术己开展多年,并取得了一定的成效,但始终未取得较大的突破。
从总体来看,先进的是点,落后的是面,我国的数控加工及数控编程与世界先进水平相比,约有10一15年的差距,差距主要包涵以下几个方面:数控技术的硬件基础落后,CAD/CAM支撑的软件体系尚未形成,CAD/CAM软件关键技术落后。
参考资料来源:网络-自动编程
参考资料来源:网络-自动编程技术