导航:首页 > 编程语言 > python中文语料库

python中文语料库

发布时间:2022-07-11 11:02:21

‘壹’ 最受欢迎的 15 大 python 库有哪些

1、Pandas:是一个Python包,旨在通过“标记”和“关系”数据进行工作,简单直观。它设计用于快速简单的数据操作、聚合和可视化,是数据整理的完美工具。
2、Numpy:是专门为Python中科学计算而设计的软件集合,它为Python中的n维数组和矩阵的操作提供了大量有用的功能。该库提供了NumPy数组类型的数学运算向量化,可以改善性能,从而加快执行速度。
3、SciPy:是一个工程和科学软件库,包含线性代数,优化,集成和统计的模块。SciPy库的主要功能是建立在NumPy上,通过其特定子模块提供有效的数值例程,并作为数字积分、优化和其他例程。
4、Matplotlib:为轻松生成简单而强大的可视化而量身定制,它使Python成为像MatLab或Mathematica这样的科学工具的竞争对手。
5、Seaborn:主要关注统计模型的可视化(包括热图),Seaborn高度依赖于Matplotlib。
6、Bokeh:独立于Matplotlib,主要焦点是交互性,它通过现代浏览器以数据驱动文档的风格呈现。
7、Plotly:是一个基于Web用于构建可视化的工具箱,提供API给一些编程语言(Python在内)。
8、Scikits:是Scikits
Stack额外的软件包,专为像图像处理和机器学习辅助等特定功能而设计。它建立在SciPy之上,中集成了有质量的代码和良好的文档、简单易用并且十分高效,是使用Python进行机器学习的实际行业标准。
9、Theano:是一个Python软件包,它定义了与NumPy类似的多维数组,以及数学运算和表达式。此库是被编译的,可实现在所有架构上的高效运行。
10、TensorFlow:是数据流图计算的开源库,旨在满足谷歌对训练神经网络的高需求,并且是基于神经网络的机器学习系统DistBelief的继任者,可以在大型数据集上快速训练神经网络。
11、Keras:是一个用Python编写的开源的库,用于在高层的接口上构建神经网络。它简单易懂,具有高级可扩展性。
12、NLTK:主要用于符号学和统计学自然语言处理(NLP) 的常见任务,旨在促进NLP及相关领域(语言学,认知科学人工智能等)的教学和研究。
13、Gensim:是一个用于Python的开源库,为有向量空间模型和主题模型的工作提供了使用工具。这个库是为了高效处理大量文本而设计,不仅可以进行内存处理,还可以通过广泛使用NumPy数据结构和SciPy操作来获得更高的效率。

‘贰’ 能够用于tf-idf的语料库(python学习).

您好,推荐使用CRAFT语料库
CRAFT(Colorado Richly Annotated Full-Text)语料库,中文名科罗拉多丰富语料注释库。CRAFT收录了97篇可公开获取全文的生物医学期刊文献,并将这些文章在语义和句法上都作了详尽的注释以作为自然语言处理(NLP)社区的生物医学研究资源。CRAFT基于9个常用的生物医学本体,从这97篇文献中识别了所有的生物学实体,这些本体包括:细胞类型本体,小分子化合物本体(CHEBI),NCBI分类法,蛋白质本体,序列本体,Entrez Gene数据库的条目,以及基因本体(Gene Ontology)的三个子条目。CRAFT语料库已被广泛应用于对文本挖掘工具的性能测试中。当然也可以用于TF-IDF方法。
TF-IDF(term frequency–inverse document frequency)是一种用于信息检索与数据挖掘的常用加权技术。TF意思是词频(Term Frequency),IDF意思是逆文本频率指数(Inverse Document Frequency)。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜索引擎应用,作为文件与用户查询之间相关程度的度量或评级。

‘叁’ 如何利用Python对中文进行分词处理

python做中文分词处理主要有以下几种:结巴分词、NLTK、THULAC
1、fxsjy/jieba
结巴的标语是:做最好的 Python 中文分词组件,或许从现在来看它没做到最好,但是已经做到了使用的人最多。结巴分词网上的学习资料和使用案例比较多,上手相对比较轻松,速度也比较快。
结巴的优点:
支持三种分词模式
支持繁体分词
支持自定义词典
MIT 授权协议

2、THULAC:一个高效的中文词法分析工具包
前两天我在做有关于共享单车的用户反馈分类,使用jieba分词一直太过零散,分类分不好。后来江兄给我推荐了THULAC: 由清华大学自然语言处理与社会人文计算实验室研制推出的一套中文词法分析工具包 。THULAC的接口文档很详细,简单易上手。
THULAC分词的优点:
能力强。利用规模最大的人工分词和词性标注中文语料库(约含5800万字)训练而成,模型标注能力强大。
准确率高。该工具包在标准数据集Chinese Treebank(CTB5)上分词的F1值可达97.3%,词性标注的F1值可达到92.9%
速度较快。同时进行分词和词性标注速度为300KB/s,每秒可处理约15万字。只进行分词速度达到1.3MB/s,速度比jieba慢

Python 解决中文编码问题基本可以用以下逻辑:
utf8(输入) ——> unicode(处理) ——> (输出)utf8
Python 里面处理的字符都是都是unicode 编码,因此解决编码问题的方法是把输入的文本(无论是什么编码)解码为(decode)unicode编码,然后输出时再编码(encode)成所需编码。
由于处理的一般为txt 文档,所以最简单的方法,是把txt 文档另存为utf-8 编码,然后使用Python 处理的时候解码为unicode(sometexts.decode('utf8')),输出结果回txt 的时候再编码成utf8(直接用str() 函数就可以了)。

‘肆’ python数据分析需要哪些库

1.Numpy库
是Python开源的数值计算扩展工具,提供了Python对多维数组的支持,能够支持高级的维度数组与矩阵运算。此外,针对数组运算也提供了大量的数学函数库,Numpy是大部分Python科学计算的基础,具有很多功能。
2.Pandas库
是一个基于Numpy的数据分析包,为了解决数据分析任务而创建的。Pandas中纳入了大量库和标准的数据模型,提供了高效地操作大型数据集所需要的函数和方法,使用户能快速便捷地处理数据。
3.Matplotlib库
是一个用在Python中绘制数组的2D图形库,虽然它起源于模仿MATLAB图形命令,但它独立于MATLAB,可以通过Pythonic和面向对象的方式使用,是Python中Z出色的绘图库。主要用纯Python语言编写的,它大量使用Numpy和其他扩展代码,即使对大型数组也能提供良好的性能。
4.Seaborn库
是Python中基于Matplotlib的数据可视化工具,提供了很多高层封装的函数,帮助数据分析人员快速绘制美观的数据图形,从而避免了许多额外的参数配置问题。
5.NLTK库
被称为使用Python进行教学和计算语言学工作的Z佳工具,以及用自然语言进行游戏的神奇图书馆。NLTK是一个领先的平台,用于构建使用人类语言数据的Python程序,它为超过50个语料库和词汇资源提供了易于使用的接口,还提供了一套文本处理库,用于分类、标记化、词干化、解析和语义推理、NLP库的包装器和一个活跃的讨论社区。

‘伍’ python 如何载入自己的语料库

NLTK自然语言处理的包有一个语料库,不过是英文的

‘陆’ python 中文切词使用停用词表问题


python中最好不要在list遍历中使用list.remove方法:

建议使用新的list存储要保留的内容,然后返回这个新list。比如

a_list=[1,2,3,4,5]
needs_to_be_removed=[3,4,5]
result=[]
forvina_list:
ifvnotinneeds_to_be_removed:
result.append(v)
printresult



‘柒’ python如何利用已有的语料库,对一篇新闻文本进行分词

把自己的语料库(sogou文本分类语料库)放在LTK_DATA/corpora/目录下;
然后在命令行输入以下之后,即可看到所有的txt文件名列表了。

‘捌’ 【Python基础】python数据分析需要哪些库

1.Numpy库
是Python开源的数值计算扩展工具,提供了Python对多维数组的支持,能够支持高级的维度数组与矩阵运算。此外,针对数组运算也提供了大量的数学函数库,Numpy是大部分Python科学计算的基础,具有很多功能。
2.Pandas库
是一个基于Numpy的数据分析包,为了解决数据分析任务而创建的。Pandas中纳入了大量库和标准的数据模型,提供了高效地操作大型数据集所需要的函数和方法,使用户能快速便捷地处理数据。
3.Matplotlib库
是一个用在Python中绘制数组的2D图形库,虽然它起源于模仿MATLAB图形命令,但它独立于MATLAB,可以通过Pythonic和面向对象的方式使用,是Python中最出色的绘图库。主要用纯Python语言编写的,它大量使用Numpy和其他扩展代码,即使对大型数组也能提供良好的性能。
4.Seaborn库
是Python中基于Matplotlib的数据可视化工具,提供了很多高层封装的函数,帮助数据分析人员快速绘制美观的数据图形,从而避免了许多额外的参数配置问题。
5.NLTK库
被称为使用Python进行教学和计算语言学工作的最佳工具,以及用自然语言进行游戏的神奇图书馆。NLTK是一个领先的平台,用于构建使用人类语言数据的Python程序,它为超过50个语料库和词汇资源提供了易于使用的接口,还提供了一套文本处理库,用于分类、标记化、词干化、解析和语义推理、NLP库的包装器和一个活跃的讨论社区。

‘玖’ 2017年10大流行Python库有哪些

1、NumPy
NumPy是构建科学计算 stack 的最基础的包。它为 Python 中的 n 维数组和矩阵的操作提供了大量有用的功能。该库还提供了 NumPy 数组类型的数学运算向量化,可以提升性能,从而加快执行速度。

2、SciPy
SciPy 是一个工程和科学软件库, 包含线性代数、优化、集成和统计的模块。SciPy 库的主
要功能建立在 NumPy 的基础之上,它通过其特定的子模块提供高效的数值例程操作。SciPy 的所有子模块中的函数都有详细的文档,这也是一个优势。
3、Pandas
Pandas是一个 Python 包,旨在通过“标记(labeled)”和“关系(relational)”数据进行工作,简单直观。Pandas 是 data wrangling 的完美工具。它设计用于快速简单的数据操作、聚合和可视化。
4、Seaborn
Seaborn 主要关注统计模型的可视化;这种可视化包括热度图(heat map),可以总结数据但也描绘总体分布。Seaborn 基于 Matplotlib,并高度依赖于它。
5、Bokeh
Bokeh是一个很好的可视化库,其目的是交互式可视化,不过这个库独立于 Matplotlib,它通过现代浏览器以数据驱动文档(D3.js)的风格呈现。
6、Scikits
Scikits 是 SciPy Stack 的附加软件包,专为特定功能(如图像处理和辅助机器学习)而设计。其中最突出的一个是 scikit-learn。该软件包构建于 SciPy 之上,并大量使用其数学操作,是使用 Python 进行机器学习的实际上的行业标准。
7、Theano
Theano 是一个 Python 包,它定义了与 NumPy 类似的多维数组,以及数学运算和表达式。该库是经过编译的,使其在所有架构上能够高效运行。这个库最初由蒙特利尔大学机器学习组开发,主要是为了满足机器学习的需求。
8、Keras
Keras是一个使用高层接口构建神经网络的开源库,它是用 Python 编写的。它简单易懂,具有高级可扩展性。Keras 极其容易上手,而且可以进行快速的原型设计,足以用于严肃的建模。
9、Gensim
Gensim是一个用于 Python 的开源库,实现了用于向量空间建模和主题建模的工具。Gensim 实现了诸如分层 Dirichlet 进程(HDP)、潜在语义分析(LSA)和潜在 Dirichlet 分配(LDA)等算法,还有 tf-idf、随机投影、word2vec 和 document2vec,以便于检查一组文档(通常称为语料库)中文本的重复模式。
10、Scrapy
Scrapy 是用于从网络检索结构化数据的爬虫程序的库。它现在已经发展成了一个完整的框架,可以从 API 收集数据,也可以用作通用的爬虫。该库在接口设计上遵循着名的 Don’t Repeat Yourself 原则——提醒用户编写通用的可复用的代码,因此可以用来开发和扩展大型爬虫。

‘拾’ python数据挖掘——文本分析

作者 | zhouyue65

来源 | 君泉计量

文本挖掘:从大量文本数据中抽取出有价值的知识,并且利用这些知识重新组织信息的过程。

一、语料库(Corpus)

语料库是我们要分析的所有文档的集合。

二、中文分词

2.1 概念:

中文分词(Chinese Word Segmentation):将一个汉字序列切分成一个一个单独的词。

eg:我的家乡是广东省湛江市-->我/的/家乡/是/广东省/湛江市

停用词(Stop Words):

数据处理时,需要过滤掉某些字或词

√泛滥的词,如web、网站等。

√语气助词、副词、介词、连接词等,如 的,地,得;

2.2 安装Jieba分词包:

最简单的方法是用CMD直接安装:输入pip install jieba,但是我的电脑上好像不行。

后来在这里:https://pypi.org/project/jieba/#files下载了jieba0.39解压缩后 放在Python36Libsite-packages里面,然后在用cmd,pip install jieba 就下载成功了,不知道是是什么原因。

然后我再anaconda 环境下也安装了jieba,先在Anaconda3Lib这个目录下将jieba0.39的解压缩文件放在里面,然后在Anaconda propt下输入 pip install jieba,如下图:

2.3 代码实战:

jieba最主要的方法是cut方法:

jieba.cut方法接受两个输入参数:

1) 第一个参数为需要分词的字符串

2)cut_all参数用来控制是否采用全模式

jieba.cut_for_search方法接受一个参数:需要分词的字符串,该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细

注意:待分词的字符串可以是gbk字符串、utf-8字符串或者unicode

jieba.cut以及jieba.cut_for_search返回的结构都是一个可迭代的generator,可以使用for循环来获得分词后得到的每一个词语(unicode),也可以用list(jieba.cut(...))转化为list代码示例( 分词 )

输出结果为: 我 爱

Python

工信处

女干事

每月 经过 下属 科室 都 要 亲口

交代

24 口 交换机 等 技术性 器件 的 安装

工作

分词功能用于专业的场景:

会出现真武七截阵和天罡北斗阵被分成几个词。为了改善这个现象,我们用导入词库的方法。

但是,如果需要导入的单词很多,jieba.add_word()这样的添加词库的方法就不高效了。

我们可以用jieba.load_userdict(‘D:PDM2.2金庸武功招式.txt’)方法一次性导入整个词库,txt文件中为每行一个特定的词。

2.3.1 对大量文章进行分词

先搭建语料库:

分词后我们需要对信息处理,就是这个分词来源于哪个文章。

四、词频统计

3.1词频(Term Frequency):

某个词在该文档中出现的次数。

3.2利用Python进行词频统计

3.2.1 移除停用词的另一种方法,加if判断

代码中用到的一些常用方法:

分组统计:

判断一个数据框中的某一列的值是否包含一个数组中的任意一个值:

取反:(对布尔值)

四、词云绘制

词云(Word Cloud):是对文本中词频较高的分词,给与视觉上的突出,形成“关键词渲染”,从而国旅掉大量的文本信息,使浏览者一眼扫过就可以领略文本的主旨。

4.1 安装词云工具包

这个地址:https://www.lfd.uci.e/~gohlke/pythonlibs/ ,可以搜到基本上所有的Python库,进去根据自己的系统和Python的版本进行下载即可。

在python下安装很方便,在anaconda下安装费了点劲,最终将词云的文件放在C:UsersAdministrator 这个目录下才安装成功。

五、美化词云(词云放入某图片形象中)

六、关键词提取

结果如下:

七、关键词提取实现

词频(Term Frequency):指的是某一个给定的词在该文档中出现的次数。

计算公式: TF = 该次在文档中出现的次数

逆文档频率(Inverse Document Frequency):IDF就是每个词的权重,它的大小与一个词的常见程度成反比

计算公式:IDF = log(文档总数/(包含该词的文档数 - 1))

TF-IDF(Term Frequency-Inverse Document Frequency):权衡某个分词是否关键词的指标,该值越大,是关键词的可能性就越大。

计算公式:TF - IDF = TF * IDF

7.1文档向量化

7.2代码实战

阅读全文

与python中文语料库相关的资料

热点内容
mdr软件解压和别人不一样 浏览:884
单片机串行通信有什么好处 浏览:320
游戏开发程序员书籍 浏览:843
pdf中图片修改 浏览:269
汇编编译后 浏览:474
php和java整合 浏览:829
js中执行php代码 浏览:440
国产单片机厂商 浏览:57
苹果手机怎么设置不更新app软件 浏览:284
转行当程序员如何 浏览:492
苹果id怎么验证app 浏览:864
查看手机命令 浏览:953
抖音反编译地址 浏览:226
如何加密软件oppoa5 浏览:233
java从入门到精通明日科技 浏览:96
拆解汽车解压视频 浏览:598
新版百度云解压缩 浏览:593
android上下拉刷新 浏览:880
centos可执行文件反编译 浏览:839
林清玄pdf 浏览:271