A. python程序执行完有对象的引用计数不为0,会怎么处理
1. 整个执行结束后,解释器退出时会清理所有解释器产生的对象。2. CPython的实现里有个mark-sweep。因此即使出现了循环引用又被扔掉的对象,最终还是会被回收的。3. 你的例子不构成循环引用,完全会根据计数正常回收。清理b时,b所指list引用归0,list被回收,list中对a的引用就会减1,因此没有任何问题。
B. python引用计数错误
你的代码有地方写错了
C. Python垃圾回收机制是什么样的
Python垃圾回收机制是通过引用计数来管理的引用计数表示记录这个对象被引用的次数如果有新的引用指向对象,对象引用计数就加一,引用被销毁时,对象引用计数减一,当用户的引用计数为0时,该内存被释放以上就是Python的垃圾回收机制了 ,在黑马程序员看过一个视频,有专门讲解的,你可以去看看!谢谢你,如果你有这方面的问题的话,您可以随时询问我
D. python如何控制内存
python控制内存的方法:
一、对象的引用计数机制
二、垃圾回收机制
三、内存池机制
一、对象的引用计数机制
Python内部使用引用计数,来保持追踪内存中的对象,所有对象都有引用计数。
引用计数增加的情况:
1、一个对象分配一个新名称
2、将其放入一个容器中(如列表、元组或字典)
引用计数减少的情况:
1、使用del语句对对象别名显示的销毁
2、引用超出作用域或被重新赋值 sys.getrefcount( )函数可以获得对象的当前引用计数
多数情况下,引用计数比你猜测得要大得多。对于不可变数据(如数字和字符串),解释器会在程序的不同部分共享内存,以便节约内存。
二、垃圾回收
1、当一个对象的引用计数归零时,它将被垃圾收集机制处理掉。
2、当两个对象a和b相互引用时,del语句可以减少a和b的引用计数,并销毁用于引用底层对象的名称。然而由于每个对象都包含一个对其他对象的应用,因此引用计数不会归零,对象也不会销毁。(从而导致内存泄露)。为解决这一问题,解释器会定期执行一个循环检测器,搜索不可访问对象的循环并删除它们。
三、内存池机制
Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。
1、Pymalloc机制。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。
2、Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的malloc。
3、对于Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。
更多Python知识请关注Python视频教程栏目。
E. 如何评价python的内存管理机制
Python有两种共存的内存管理机制: 引用计数和垃圾回收. 引用计数是一种非常高效的内存管理手段, 当一个Python对象被引 用时其引用计数增加1, 当其不再被一个变量引用时则计数减1. 当引用计数等于0时对象被删除.引用计数的一个主要缺点是无法自动处理循环引用。
F. Python如何管理内存
Python中的内存管理是从三个方面来进行的,一对象的引用计数机制,二垃圾回收机制,三内存池机制
一、对象的引用计数机制
Python内部使用引用计数,来保持追踪内存中的对象,所有对象都有引用计数。
引用计数增加的情况:
1,一个对象分配一个新名称
2,将其放入一个容器中(如列表、元组或字典)
引用计数减少的情况:
1,使用del语句对对象别名显示的销毁
2,引用超出作用域或被重新赋值
sys.getrefcount( )函数可以获得对象的当前引用计数
多数情况下,引用计数比你猜测得要大得多。对于不可变数据(如数字和字符串),解释器会在程序的不同部分共享内存,以便节约内存。
二、垃圾回收
1,当一个对象的引用计数归零时,它将被垃圾收集机制处理掉。
2,当两个对象a和b相互引用时,del语句可以减少a和b的引用计数,并销毁用于引用底层对象的名称。然而由于每个对象都包含一个对其他对象的应用,因此引用计数不会归零,对象也不会销毁。(从而导致内存泄露)。为解决这一问题,解释器会定期执行一个循环检测器,搜索不可访问对象的循环并删除它们。
三、内存池机制
Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。
1,Pymalloc机制。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。
2,Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的malloc。
3,对于Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。
G. 如何进行处理Python对象参数解析
椋�匦虢�浔嘁氤啥��唇涌獾男问剑�ǔJ褂肞ython的C语言扩展接口提供的函数PyArg_ParseTuple()来获得这些参数值,希望本文能够对大家有帮助。Python是用C语言实现的一种脚本语言,本身具有优良的开放性和可扩展性,并提供了方便灵活的应用程序接口(API)。从而使得C/C++程序员能够在各个级别上对Python解释器的功能进行扩展。在使用C/C++对Python进行功能扩展之前,必须首先掌握Python解释所提供的C语言接口。Python是一门面向对象的脚本语言,所有的对象在Python解释器中都被表示成PyObject,PyObject结构包含Python对象的所有成员指针。并且对Python对象的类型信息和引用计数进行维护。在进行Python的扩展编程时,一旦要在C或者C++中对Python对象进行处理,就意味着要维护一个PyObject结构。在Python的C语言扩展接口中,大部分函数都有一个或者多个参数为PyObject指针类型,并且返回值也大都为PyObject指针。为了简化内存管理,Python通过引用计数机制实现了自动的垃圾回收功能,Python中的每个对象都有一个引用计数。用来计数该对象在不同场所分别被引用了多少次。每当引用一次Python对象,相应的引用计数就增1,每当消毁一次Python对象,则相应的引用就减1,只有当引用计数为零时,才真正从内存中删除Python对象。下面的例子说明了Python解释器如何利用引用计数来对Pyhon对象进行管理:#include <Python.h> PyObject* wrap_fact(PyObject* self, PyObject* args) { int n, result; if (! PyArg_ParseTuple(args, "i:fact", &n)) return NULL; result = fact(n); return Py_BuildValue("i", result); } static PyMethodDef exampleMethods[] = { {"fact", wrap_fact, METH_VARARGS, "Caculate N!"}, {NULL, NULL} }; void initexample() { PyObject* m; m = Py_InitMole("example", exampleMethods); } 在C/C++中处理Python对象时,对引用计数进行正确的维护是一个关键问题,处理不好将很容易产生内存泄漏。Python的C语言接口提供了一些宏来对引用计数进行维护,最常见的是用Py_INCREF()来增加使Python对象的引用计数增1,用Py_DECREF()来使Python对象的引用计数减1。该函数是Python解释器和C函数进行交互的接口,带有两个参数:self和args。参数self只在C函数被实现为内联方法(built-in method)时才被用到。通常该参数的值为空(NULL),参数args中包含了Python解释器要传递给C函数的所有参数,通常使用Python的C语言扩展接口提供的函数PyArg_ParseTuple()来获得这些参数值。方法列表中的每项由四个部分组成:方法名、导出函数、参数传递方式和方法描述。
H. python的 del 函数是删对象还是删引用
1.首先介绍下python的对象引用
1)Python中不存在传值调用,一切传递的都是对象引用,也可以认为是传址调用。即Python不允许程序员选择采用传值或传引用。Python参数传递采用的是“传对象引用”的方式。实际上,这种方式相当于传值和传引用的一种综合。如果函数参数收到的是一个可变对象(比如字典或者列表)的引用,就能修改对象的原始值——相当于通过“传引用”来传递对象。如果函数收到的是一个不可变对象(比如数字、字符或者元组)的引用,就不能直接修改原始对象——相当于通过"传值"来传递对象。
2)当复制列表或字典时,就复制了对象列表的引用,如果改变引用的值,则修改了原始的参数。
3)为了简化内存管理,Python通过引用计数机制实现自动垃圾回收功能,Python中的每个对象都有一个引用计数,用来计数该对象在不同场所分别被引用了多少次。每当引用一次Python对象,相应的引用计数就增1,每当消毁一次Python对象,则相应的引用就减1,只有当引用计数为零时,才真正从内存中删除Python对象。
2. 可变对象与不可变对象的概念与分类
Python在heap中分配的对象分成2类:
不可变对象(immutable object):Number(int、float、bool、complex)、String、Tuple. 采用等效于“传引用”的方式。
可变对象(mutable object):List、dictionary.采用等效于“传值”的方式。
3. del 是删除引用而不是删除对象,对象由自动垃圾回收机制(GC)删除
看这个例子:
#!/usr/bin/evn python# -*- coding:utf-8 -*-# Author: antcolonies'''python中的内置方法del不同于C语言中的free和C++中的delete
(free和delete直接回收内存,当然存储于该内存的对象也就挂了)
Python都是引用,垃圾回收为GC机制'''
'''if __name__ == '__main__':
a = 1 # 对象 1 被 变量a引用,对象1的引用计数器为1
b = a # 对象1 被变量b引用,对象1的引用计数器加1
c = a # 对象1 被变量c引用,对象1的引用计数器加1
del a # 删除变量a,解除a对1的引用,对象1的引用计数器减1
del b # 删除变量b,解除b对1的引用,对象1的引用计数器减1
print(c) # 1'''
if __name__=='__main__':
li=['one','two','three','four','five'] # 列表本身不包含数据'one','two','three','four','five',而是包含变量:li[0] li[1] li[2] li[3] li[4]
first=li[0] # 拷贝列表,也不会有数据对象的复制,而是创建新的变量引用
del li[0] print(li) # ['two','three','four','five']
print(first) # one
list1 = li del li print(list1) # ['two', 'three', 'four', 'five']# print(type(li)) # NameError: name 'li' is not defined
I. 在Python中怎样获取对象的引用计数
import sys
a = 0
sys.getrefcount(a)
J. Python引入了一个机制:引用计数。
python内部使用引用计数,来保持追踪内存中的对象,
Python内部记录了对象有多少个引用
,即引用计数,当对象被创建时就创建了一个引用计数,当对象不再需要时,这个对象的引用计数为0时,它被垃圾回收。
总结一下对象会在一下情况下引用计数加1:
1.对象被创建:x=4
2.另外的别人被创建:y=x
3.被作为参数传递给函数:foo(x)
4.作为容器对象的一个元素:a=[1,x,'33']
引用计数减少情况
1.一个本地引用离开了它的作用域。比如上面的foo(x)函数结束时,x指向的对象引用减1。
2.对象的别名被显式的销毁:del x ;或者del y
3.对象的一个别名被赋值给其他对象:x=789
4.对象从一个窗口对象中移除:myList.remove(x)
5.窗口对象本身被销毁:del myList,或者窗口对象本身离开了作用域。垃圾回收
1、当内存中有不再使用的部分时,垃圾收集器就会把他们清理掉。
它会去检查那些引用计数为0的对象
,然后清除其在内存的空间。当然除了引用计数为0的会被清除,还有一种情况也会被垃圾收集器清掉:当两个对象相互引用时,他们本身其他的引用已经为0了。
2、垃圾回收机制还有一个
循环垃圾回收器
, 确保释放循环引用对象(a引用b, b引用a, 导致其引用计数永远不为0)。
在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,所以并没有对象一级的内存池机制。
这就意味着Python在运行期间会大量地执行malloc和free的操作,频繁地在用户态和核心态之间进行切换,这将严重影响Python的执行效率。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。
内存池机制
Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。
Python中所有小于256个字节的对象都使用pymalloc实现的分配器,而大的对象则使用系统的
malloc。另外Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。
在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,所以并没有对象一级的内存池机制。这就意味着Python在运行期间会大量地执行malloc和free的操作,频繁地在用户态和核心态之间进行切换,这将严重影响
Python的执行效率。这也就是之前提到的