导航:首页 > 编程语言 > python提取数据制作excel

python提取数据制作excel

发布时间:2022-07-19 05:13:38

python:提取txt文件中特定内容后的数据到excel

首先,你的TXT文件格式是否清晰,如果是类似表格的话,假如IPC在每行第三个位置,你可以按行读取,然后split剪切,得到IPC数据
最好把TXT贴上来比较好

㈡ python提取excel表中的数据

如果只涉及从Excel中提取数据,那么用第三方库xlrd比较方便,具体方法可以网络。

㈢ 利用python批量读取excel数据并按顺序保存至新表

一般需要数据处理时我们会使用excel表格,并可使用其自带的求和、排序等功能对数据进行处理,但对于某些复杂的处理,我们可以使用python工具来读取excel数据,并通过python编程,来实现自己所需要的数据处理结果和数据保存方式。

㈣ python怎么把数据输出到excel

python导出数据到excel文件的方法:

1、调用Workbook()对象中的add_sheet()方法

1

2

wb = xlwt.Workbook()

ws = wb.add_sheet('A Test Sheet')

2、通过add_sheet()方法中的write()函数将数据写入到excel中,然后使用save()函数保存excel文件

1

2

3

4

5

6

7

ws.write(0, 0, 1234.56, style0)

ws.write(1, 0, datetime.now(), style1)

ws.write(2, 0, 1)

ws.write(2, 1, 1)

ws.write(2, 2, xlwt.Formula("A3+B3"))

wb.save('example.xls')

完整代码如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

import xlwtfrom datetime import datetime

style0 = xlwt.easyxf('font: name Times New Roman, color-index red, bold on',num_format_str='#,##0.00')

style1 = xlwt.easyxf(num_format_str='D-MMM-YY')

wb = xlwt.Workbook()

ws = wb.add_sheet('A Test Sheet')

ws.write(0, 0, 1234.56, style0)

ws.write(1, 0, datetime.now(), style1)

ws.write(2, 0, 1)

ws.write(2, 1, 1)

ws.write(2, 2, xlwt.Formula("A3+B3"))

wb.save('example.xls')

程序执行结果如下:

更多Python知识,请关注:Python自学网!!

(推荐操作系统:windows7系统、Python 3.9.1,DELL G3电脑。)

㈤ 如何使用python将大量数据导出到Excel中的小技巧

如何使用python将大量数据导出到Excel中的小技巧

(1) 问题描述:为了更好地展示数据,Excel格式的数据文件往往比文本文件更具有优势,但是具体到python中,该如何导出数据到Excel呢?如果碰到需要导出大量数据又该如何操作呢?本文主要解决以上两个问题。

(2)具体步骤如下:
1.第一步,安装openpyxl,
使用pip install openpyxl即可,但是在windows下安装的是2.2.6版本,但是centos自动安装的是4.1版本,(多谢海哥的提醒)。
写的代码在windows下运行没问题,但centos上却报错了,说是ew=ExcelWriter(workbook=wb)少提供一个参数,于是果断在 237服务器上我已安装2.2.6版本的,问题解决。
pip install openpyxl==2.2.6
2.第二步,哈哈,没有啦,废话不说了,直接上代码,ps,代码中包含xlwt和openpyxl的两个实现版本。

(3)扩展阅读:通过查阅资料,发现网上众说纷纭,总结起来有如下几点:
python Excel相关的操作的mole lib有两组,一组是xlrd、xlwt、xlutils,另一组是openpyxl,
但是前一组(xlrd,xlwt)比较老,只能处理由Excel 97-2003 或者Excel 97 以前版本生成的xls格式的excel文件,xlwt甚至不支持07版以后的excel ,这个格式excel文件一般来说,最大只能支持256列或者65536行的excel文件。
因此面对需要导出大量数据到excel的情况,你将有如下三种选择,(1)换一种存储格式,如保存为CSV文件 (2)使用openpyxl—,因为它支持对Excel 2007+ xlsx/xlsm format的处理 (3) win32 COM (Windows only)
当然,我们要直面困难了,为了更好地展示数据给产品和用户,我们依然选择的第二种。
ps,非常lucky,一番搜索后我找到了openpyxl,支持07+的excel,一直有人在维护,文档清晰易读,参照Tutorial和API文档很快就能上手,就是它了~
(4)闲话少说,直接上代码,敬请参考

# coding:utf-8
'''
# 希望对大家有帮助哈,请多提问题
create by yaoyz
date: 2017/01/24
'''
import xlrd
import xlwt
# workbook相关
from openpyxl.workbook import Workbook
# ExcelWriter,封装了很强大的excel写的功能
from openpyxl.writer.excel import ExcelWriter
# 一个eggache的数字转为列字母的方法
from openpyxl.utils import get_column_letter
from openpyxl.reader.excel import load_workbook

class HandleExcel():
'''Excel相关操作类'''
def __init__(self):
self. head_row_labels = [u'学生ID',u'学生姓名',u'联系方式',u'知识点ID',u'知识点名称']
"""
function:
读出txt文件中的每一条记录,把它保存在list中
Param:
filename: 要读出的文件名
Return:
res_list: 返回的记录的list
"""
def read_from_file(self,filename):
res_list=[]
file_obj=open(filename,"r")
for line in file_obj.readlines():
res_list.append(line)
file_obj.close()
return res_list
"""
function:
读出*.xlsx中的每一条记录,把它保存在data_dic中返回
Param:
excel_name: 要读出的文件名
Return:
data_dic: 返回的记录的dict
"""
def read_excel_with_openpyxl(self, excel_name="testexcel2007.xlsx"):
# 读取excel2007文件
wb = load_workbook(filename=excel_name)
# 显示有多少张表
print "Worksheet range(s):" , wb.get_named_ranges()
print "Worksheet name(s):" , wb.get_sheet_names()
# 取第一张表
sheetnames = wb.get_sheet_names()
ws = wb.get_sheet_by_name(sheetnames[0])
# 显示表名,表行数,表列数
print "Work Sheet Titile:" ,ws.title
print "Work Sheet Rows:" ,ws.get_highest_row()
print "Work Sheet Cols:" ,ws.get_highest_column()
# 获取读入的excel表格的有多少行,有多少列
row_num=ws.get_highest_row()
col_num=ws.get_highest_column()
print "row_num: ",row_num," col_num: ",col_num
# 建立存储数据的字典
data_dic = {}
sign=1
# 把数据存到字典中
for row in ws.rows:
temp_list=[]
# print "row",row
for cell in row:
print cell.value,
temp_list.append(cell.value)
print ""
data_dic[sign]=temp_list
sign+=1
print data_dic
return data_dic
"""
function:
读出*.xlsx中的每一条记录,把它保存在data_dic中返回
Param:
records: 要保存的,一个包含每一条记录的list
save_excel_name: 保存为的文件名
head_row_stu_arrive_star:
Return:
data_dic: 返回的记录的dict
"""
def write_to_excel_with_openpyxl(self,records,head_row,save_excel_name="save.xlsx"):
# 新建一个workbook
wb = Workbook()
# 新建一个excelWriter
ew = ExcelWriter(workbook=wb)
# 设置文件输出路径与名称
dest_filename = save_excel_name.decode('utf-8')
# 第一个sheet是ws
ws = wb.worksheets[0]
# 设置ws的名称
ws.title = "range names"
# 写第一行,标题行
for h_x in range(1,len(head_row)+1):
h_col=get_column_letter(h_x)
#print h_col
ws.cell('%s%s' % (h_col, 1)).value = '%s' % (head_row[h_x-1])
# 写第二行及其以后的那些行
i = 2
for record in records:
record_list=str(record).strip().split("\t")
for x in range(1,len(record_list)+1):
col = get_column_letter(x)
ws.cell('%s%s' % (col, i)).value = '%s' % (record_list[x-1].decode('utf-8'))
i += 1
# 写文件
ew.save(filename=dest_filename)
"""
function:
测试输出Excel内容
读出Excel文件
Param:
excel_name: 要读出的Excel文件名
Return:

"""
def read_excel(self,excel_name):
workbook=xlrd.open_workbook(excel_name)
print workbook.sheet_names()
# 获取所有sheet
print workbook.sheet_names() # [u'sheet1', u'sheet2']
sheet2_name = workbook.sheet_names()[1]
# 根据sheet索引或者名称获取sheet内容
sheet2 = workbook.sheet_by_index(1) # sheet索引从0开始
sheet2 = workbook.sheet_by_name('Sheet1')
# sheet的名称,行数,列数
print sheet2.name,sheet2.nrows,sheet2.ncols
# 获取整行和整列的值(数组)
rows = sheet2.row_values(3) # 获取第四行内容
cols = sheet2.col_values(2) # 获取第三列内容
print rows
print cols
# 获取单元格内容
print sheet2.cell(1,0).value
print sheet2.cell_value(1,0)
print sheet2.row(1)[0].value
# 获取单元格内容的数据类型
print sheet2.cell(1,0).ctype
# 通过名称获取
return workbook.sheet_by_name(u'Sheet1')
"""
function:
设置单元格样式
Param:
name: 字体名字
height: 字体高度
bold: 是否大写
Return:
style: 返回设置好的格式对象
"""
def set_style(self,name,height,bold=False):
style = xlwt.XFStyle() # 初始化样式
font = xlwt.Font() # 为样式创建字体
font.name = name # 'Times New Roman'
font.bold = bold
font.color_index = 4
font.height = height
borders= xlwt.Borders()
borders.left= 6
borders.right= 6
borders.top= 6
borders.bottom= 6
style.font = font
style.borders = borders
return style
"""
function:
按照 设置单元格样式 把计算结果由txt转变为Excel存储
Param:
dataset:要保存的结果数据,list存储
Return:
将结果保存为 excel对象中
"""
def write_to_excel(self, dataset,save_excel_name,head_row):
f = xlwt.Workbook() # 创建工作簿
# 创建第一个sheet:
# sheet1
count=1
sheet1 = f.add_sheet(u'sheet1', cell_overwrite_ok=True) # 创建sheet
# 首行标题:
for p in range(len(head_row)):
sheet1.write(0,p,head_row[p],self.set_style('Times New Roman',250,True))
default=self.set_style('Times New Roman',200,False) # define style out the loop will work
for line in dataset:
row_list=str(line).strip("\n").split("\t")
for pp in range(len(str(line).strip("\n").split("\t"))):
sheet1.write(count,pp,row_list[pp].decode('utf-8'),default)
count+=1
f.save(save_excel_name) # 保存文件

def run_main_save_to_excel_with_openpyxl(self):
print "测试读写2007及以后的excel文件xlsx,以方便写入文件更多数据"
print "1. 把txt文件读入到内存中,以list对象存储"
dataset_list=self.read_from_file("test_excel.txt")
'''test use openpyxl to handle EXCEL 2007'''
print "2. 把文件写入到Excel表格中"
head_row_label=self.head_row_labels
save_name="test_openpyxl.xlsx"
self.write_to_excel_with_openpyxl(dataset_list,head_row_label,save_name)
print "3. 执行完毕,由txt格式文件保存为Excel文件的任务"
def run_main_save_to_excel_with_xlwt(self):
print " 4. 把txt文件读入到内存中,以list对象存储"
dataset_list=self.read_from_file("test_excel.txt")
'''test use xlwt to handle EXCEL 97-2003'''
print " 5. 把文件写入到Excel表格中"
head_row_label=self.head_row_labels
save_name="test_xlwt.xls"
self.write_to_excel_with_openpyxl(dataset_list,head_row_label,save_name)
print "6. 执行完毕,由txt格式文件保存为Excel文件的任务"
if __name__ == '__main__':
print "create handle Excel Object"
obj_handle_excel=HandleExcel()
# 分别使用openpyxl和xlwt将数据写入文件
obj_handle_excel.run_main_save_to_excel_with_openpyxl()
obj_handle_excel.run_main_save_to_excel_with_xlwt()
'''测试读出文件,注意openpyxl不可以读取xls的文件,xlrd不可以读取xlsx格式的文件'''
#obj_handle_excel.read_excel_with_openpyxl("testexcel2003.xls") # 错误写法
#obj_handle_excel.read_excel_with_openpyxl("testexcel2003.xls") # 错误写法
obj_handle_excel.read_excel("testexcel2003.xls")
obj_handle_excel.read_excel_with_openpyxl("testexcel2007.xlsx")

㈥ 用python模糊检索EXCEL文件的内容,并写入新的EXCEL表

这类基础逻辑编程初学可以手写逻辑,这个基本如下:

  1. 载入基础信息(Excel地址)

    ###手动指定###

  2. 获取输入查询数据

    ###input()获取,保存指变量###

  3. 打开Excel文件

    ####使用openpyxl打开,获取工作簿对象和表对象####

  4. 获取excel有效行与列数据

    ### 可以函数判断,最好手工写非空判断获取####

  5. 遍历返回结果数据

    ### 读取每个单元格 查询字符串即可,习惯用Count还是find函数看具体需求和习惯###

  6. 写入文件

    同样可以采用openpyxl写入excel或者直接写入txt文件

㈦ 想要处理用python抓取的数据,并且要导出到excel

importjson

data={"data":[
{"id":"1","price_data":"2017-01-06","nav":"1.516900","cumulativate_nav_withdrawa1":"1.516900"},
{"id":"1","price_data":"2017-01-02","nav":"1.516900","cumulativate_nav_withdrawa1":"1.516900"},
{"id":"1","price_data":"2017-01-03","nav":"1.516900","cumulativate_nav_withdrawa1":"1.516900"},
{"id":"1","price_data":"2017-01-05","nav":"1.516900","cumulativate_nav_withdrawa1":"1.516900"},
{"id":"1","price_data":"2017-01-07","nav":"1.516900","cumulativate_nav_withdrawa1":"1.516900"}
]}

json_str=json.mps(data)
jsonData=json.loads(json_str)
all_data=jsonData["data"]
foriteminall_data:
#导出代码在这里实现
printitem['price_data'],item['nav'],item['cumulativate_nav_withdrawa1']

㈧ python提取excel表中的数据两列

1、首先打开excel表格,在单元格中输入两列数据,需要将这两列数据进行比对相同数据。

2、然后在C1单元格中输入公式:=VLOOKUP(B1,A:A,1,0),意思是比对B1单元格中A列中是否有相同数据。

3、点击回车,即可将公式的计算结果显示出来,可以看到C1中显示的是B1在A列中找到的相同数据。

4、将公式向下填充,即可发现C列中显示出的数字即为有相同数据的,显示“#N/A”的为没有找到匹配数据的。

5、将C1-C4中的数据进行复制并粘贴成数值,即可完成相同数据的提取操作。
在实际研究中,我们经常需要获取大量数据,而这些数据很大一部分以pdf表格的形式呈现,如公司年报、发行上市公告等。面对如此多的数据表格,采用手工复制黏贴的方式显然并不可取。那么如何才能高效提取出pdf文件中的表格数据呢?

Python提供了许多可用于pdf表格识别的库,如camelot、tabula、pdfplumber等。综合来看,pdfplumber库的性能较佳,能提取出完整、且相对规范的表格。因此,本推文也主要介绍pdfplumber库在pdf表格提取中的作用。

作为一个强大的pdf文件解析工具,pdfplumber库可迅速将pdf文档转换为易于处理的txt文档,并输出pdf文档的字符、页面、页码等信息,还可进行页面可视化操作。使用pdfplumber库前需先安装,即在cmd命令行中输入:

pip install pdfplumber

pdfplumber库提供了两种pdf表格提取函数,分别为.extract_tables( )及.extract_table( ),两种函数提取结果存在差异。为进行演示,我们网站上下载了一份短期融资券主体信用评级报告,为pdf格式。任意选取某一表格,其界面如下:

接下来,我们简要分析两种提取模式下的结果差异。

(1).extract_tables( )

可输出页面中所有表格,并返回一个嵌套列表,其结构层次为table→row→cell。此时,页面上的整个表格被放入一个大列表中,原表格中的各行组成该大列表中的各个子列表。若需输出单个外层列表元素,得到的便是由原表格同一行元素构成的列表。例如,我们执行如下程序:

输出结果:

(2).extract_table( )

返回多个独立列表,其结构层次为row→cell。若页面中存在多个行数相同的表格,则默认输出顶部表格;否则,仅输出行数最多的一个表格。此时,表格的每一行都作为一个单独的列表,列表中每个元素即为原表格的各个单元格内容。若需输出某个元素,得到的便是具体的数值或字符串。如下:

输出结果:

在此基础上,我们详细介绍如何从pdf文件中提取表格数据。其中一种思路便是将提取出的列表视为一个字符串,结合Python的正则表达式re模块进行字符串处理后,将其保存为以标准英文逗号分隔、可被Excel识别的csv格式文件,即进行如下操作:

输出结果:

尽管能获得完整的表格数据,但这种方法相对不易理解,且在处理结构不规则的表格时容易出错。由于通过pdfplumber库提取出的表格数据为整齐的列表结构,且含有数字、字符串等数据类型。因此,我们可调用pandas库下的DataFrame( )函数,将列表转换为可直接输出至Excel的DataFrame数据结构。DataFrame的基本构造函数如下:

DataFrame([data,index, columns])

三个参数data、index和columns分别代表创建对象、行索引和列索引。DataFrame类型可由二维ndarray对象、列表、字典、元组等创建。本推文中的data即指整个pdf表格,提取程序如下:

其中,table[1:]表示选定整个表格进行DataFrame对象创建,columns=table[0]表示将表格第一行元素作为列变量名,且不创建行索引。输出Excel表格如下:

通过以上简单程序,我们便提取出了完整的pdf表格。但需注意的是,面对不规则的表格数据提取,创建DataFrame对象的方法依然可能出错,在实际操作中还需进行核对。

关于我们

微信公众号“爬虫俱乐部”分享实用的stata命令,欢迎转载、打赏。爬虫俱乐部是由李春涛教授领导下的研究生及本科生组成的大数据分析和数据挖掘团队。

投稿要求:

1)必须原创,禁止抄袭;

2)必须准确,详细,有例子,有截图;

㈨ 用python给excel某一列提取出来

可以用pandas库很方便的进行读取

import pandas as pd

#获取d盘根目录下工作簿4这个EXCEL文件的Sheet2工作表中的D列(第3列)内容

df=pd.read_excel(r'd:/工作簿4.xlsx',sheet_name='Sheet2',usecols=[2])

print(df)

㈩ 怎么用python+openpyxl提取txt文本数据到excel

感觉有点拖裤子放屁。。。。。明明直接就可以EXCEL导入TXT的,为什么还从绕弯走一圈。。。。。
并且后面三个问题,都是EXCEL操作的基础题,第一题用&连接符号,第二题数据分裂,日期格式分裂即可,第三题CLEAN或者数据直接分裂都可以

阅读全文

与python提取数据制作excel相关的资料

热点内容
服务器无响应是什么原因呀 浏览:978
wd文档里的app怎么制作 浏览:511
电脑里的文件夹没有了一般能恢复吗 浏览:410
哪里有配加密钥匙的 浏览:208
服务器开不了机怎么把数据弄出来 浏览:958
gif动态图片怎么压缩 浏览:519
黑猴子棒球压缩文件解压密码 浏览:631
如何让app适应不同的手机屏幕大小 浏览:8
苹果手机如何给安卓手机分享软件 浏览:759
苹果电脑怎么运行腾讯云服务器 浏览:59
明日之后沙石堡命令助手 浏览:261
蛋糕店用什么样的app 浏览:877
长安银行信用卡app怎么取现 浏览:635
dos命令cmd命令的 浏览:226
阿里云存档视频文件的服务器 浏览:194
ftp修改文件权限命令 浏览:491
周易八卦梅花算法 浏览:676
java组织机构 浏览:953
h5大转盘游戏源码 浏览:592
学校服务器地址查询 浏览:109