导航:首页 > 编程语言 > python构建工具

python构建工具

发布时间:2022-07-21 14:32:10

1. 分享!5种常用的python工具

IDLE


在安装Python时,默认也会安装IDLE。这是最优秀的Python工具之一。它可以降低Python入门的门槛。它的主要功能包括Python Shell窗口(交互式解释器)、自动补齐、高亮显示语法以及基本的集成调试器。IDLE轻巧易用,方便学习。但是,它不适用于大型项目。许多程序员都将其作为最佳的Python工具。


Scikit-learn


Scikit-learn是数据科学最常使用的Python工具之一。这是一款为机器学习和数据科学而设计的Python工具。该工具主要用于处理分类、回归、聚类、模型选择以及预处理等任务。scikit-Learn最出色的功能是在测试数据集上执行基准测试时,表现出的惊人速度。因此,对于程序员和学生来说,Scikit-learn是最优秀的Python工具之一。


Theano


Theano是一款数据科学的Python工具,对于程序员和学生而言,这是一款非常可靠的工具。它是深度学习方面最好的Python工具,因此非常适合深度学习。Theano的设计主旨是用户友好、模块化、易于扩展,而且可以与Python配合使用。它能够以最佳方式表达神经网络。Theano可以在TensorFlow和CNTK等流行的神经网络之上运行。


Selenium


Selenium是最佳的Python自动化工具之一。它适用于Python测试的自动化,常常用作Web应用程序的自动化框架。我们可以利用Selenium,通过许多编程语言(包括Java、C#、Python、ruby以及其他许多程序员和学生使用的语言)来编写测试脚本。你还可以在Selenium中集成Junit和TestNG等工具,来管理测试用例并生成报告。


Test complete


Testcomplete是另一款非常出色的Python自动化工具。支持Web、移动和桌面自动化测试。更高级的应用需要获得商业许可,而且它还可以帮助学生提高学业成绩。Test complete还可以像机器人框架一样执行关键字驱动的测试。它拥有最出色的录制以及回放功能,非常实用。


关于分享!5种常用的Python工具,环球青藤小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚。如果您还想继续了解关于python编程的学习方法及素材等内容,可以点击本站其他文章学习。

2. 如何基于Python构建一个可扩展的运维自动化平台

Django- 一个开放源代码的 Web 应用框架,由 Python 写成,采用了 MVC 的软件设计模式;
rpyc- 一个 Python 实现的 RPC 和分布式计算的工具。支持同步和异步操作、回调等;
saltstack 、 ansible 、 func - 基本 Python 开发的自动化配置管理与流程控制组件;
Mysql- 是一个非常流行的关系型数据库管理系统。
二、平台架构设计
1、 OMServer 架构图

大家对这个架构应该不会感到陌生,三层结构也是目前主流的运营平台架构。
2、 架构说明
OMServer 平台为三层架构,分别为 WEB 交互层、分布式计算层、集群管理服务层。
1) 、第一层:即为 WEB 交互层,典型的 B/S 架构,以供管理员操作的交互平台,也是 OMServer 的核心,基于 Django 开发;
2) 、第二层:分布式计算层,提供与主控端的连接通道,采用的是 rpyc 传输协议,协议操作流程:前端模块参数 -> 加密传输 -> 任务执行 -> 返回结果集 -> 解密输出。
3) 、第三层:集群管理服务层,整合 Python 主流的远程操作组件(支持 Saltstack 、 Anaible、 Func ),对被控端(业务服务器集群)进行管理,其中主控端可以根据不同 IDC 环境,采用多地多点的管理方式,可提升冗余度及执行效率。主控端操作模块以不同 Python 文件加以区分,便于维护,可灵活定制操作逻辑及横向扩展等特点。

3. python能做什么软件

主要可以做小程序,爬虫程序,用于系统编程等等还是很广泛的。

Python 的应用领域分为下面几类。下文将介绍一些Python 具体能帮我们做的事情。但我们不会对各个工具进行深入探讨,如果你对这些话题感兴趣,联系小编获取更多的信息。

1、python可以用于系统编程 Python 对操作系统服务的内置接口,使其成为编写可移植的维护操作系统的管理工具和部件(有时也被称

为Shell 工具)的理想工具。

Python 程序可以搜索文件和目录树,可以运行其他程序,用进程或线程进行并行处理等等。

2.python可以用于用户图形接口

Python 的简洁以及快速的开发周期十分适合开发GUI 程序。此外,基于C++ 平台的工具包wxPython GUI API 可以使用Python 构建可

移植的GUI 。

诸如PythonCard 和Dabo 等一些高级工具包是构建在wxPython 和Tkinter 的基础API 之上的。通过适当的库,你可以使用其他的GUI

工具包,例如,Qt 、GTK 、MFC 和Swing 等。

3.python可以用于Internet 脚本

Python 提供了标准Internet 模块,使Python 能够广泛地在多种网络任务中发挥作用,无论是在服务器端还是在客户端都是如此。

而且网络上还可以获得很多使用Python 进行Internet 编程的第三方工具此外,Python 涌现了许多Web 开发工具包,例如,Django 、

TurboGears 、Pylons 、Zope 和WebWare ,使Python 能够快速构建功能完善和高质量的网站。

4.python可以用于组件集成

在介绍Python 作为控制语言时,曾涉及它的组件集成的角色。Python 可以通过C/C++ 系统进行扩展,并能够嵌套C/C++ 系统的特

性,使其能够作为一种灵活的粘合语言,脚本化处理其他系统和组件的行为。

例如,将一个C库集成到Python 中,能够利用Python 进行测试并调用库中的其他组件;将Python 嵌入到产品中,在不需要重新编译

个产品或分发源代码的情况下,能够进行产品的单独定制。

4. Python能干什么

1、Web开发

由于Python是一种解释型的脚本语言,开发效率高,所以非常适合用来做Web开发。

Python有上百种Web开发框架,有很多成熟的模板技术,选择Python开发Web应用,不但开发效率高,而且运行速度快。常用的web开发框架有:Django、Flask、Tornado等。

由于后台服务器的通用性,除了狭义的网站之外,很多App和游戏的服务器端也同样用 Python实现。

2、网络爬虫

网络爬虫是Python比较常用的一个场景,国际上,google在早期大量地使用Python语言作为网络爬虫的基础,带动了整个Python语言的应用发展。以前国内很多人用采集器搜刮网上的内容,现在用Python收集网上的信息比以前容易很多了,如:

从各大网站爬取商品折扣信息,比较获取最优选择;

对社交网络上发言进行收集分类,生成情绪地图,分析语言习惯;

爬取网易云音乐某一类歌曲的所有评论,生成词云;

按条件筛选获得豆瓣的电影书籍信息并生成表格……

3、人工智能

Python有很多库很方便做人工智能,比如numpy,
scipy做数值计算的,sklearn做机器学习的,pybrain做神经网络的,matplotlib将数据可视化的。在人工智能大范畴领域内的数据挖掘、机器学习、神经网络、深度学习等方面都是主流的编程语言,得到广泛的支持和应用。

人工智能的核心算法大部分还是依赖于C/C++的,因为是计算密集型,需要非常精细的优化,还需要GPU、专用硬件之类的接口,这些都只有C/C++能做到。

4、数据分析

数据分析处理方面,Python有很完备的生态环境。“大数据”分析中涉及到的分布式计算、数据可视化、数据库操作等,Python中都有成熟的模块可以选择完成其功能。

对于Hadoop-MapRece和Spark,都可以直接使用Python完成计算逻辑,这无论对于数据科学家还是对于数据工程师而言都是十分便利的。

5、自动化运维

Python对于服务器运维而言也有十分重要的用途。由于目前几乎所有Linux发行版中都自带了Python解释器,使用Python脚本进行批量化的文件部署和运行调整都成了Linux服务器上很不错的选择。

Python中也包含许多方便的工具,从调控ssh/sftp用的paramiko,到监控服务用的supervisor,再到bazel等构建工具,甚至conan等用于C++的包管理工具,Python提供了全方位的工具集合,而在这基础上,结合Web,开发方便运维的工具会变得十分简单。

5. python web开发用什么工具

Python Web开发可以用到的工具有很多,比如:Pydev + Eclipse、PyCharm、VIM、Wing IDE、Spyder Python、Notpad++、Vistual Studio等,根据自己的需求来选择合适的工具即可。

6. Python编程需要用什么软件

一、终端:Upterm


Upterm简略好用,它是一个全渠道的终端,能够说是终端里的IDE,有着强壮的自动补全功能。


二、交互式解说器:PtPython


一个交互式的Python解说器。支持语法高亮、提示乃至是vim和emacs的键入模式。其实我们在课程里提供的在线终端也内置了ptPython。


三、包管理:Anaconda


能帮你装置好许多麻烦的软件,包括:Python环境、pip包管理东西、常用的库、配置好环境路径等等。用Python搞数据方面的工作,就装置Anaconda就好了,它乃至开发了一套JIT的解说器Numba。所以Anaconda有了JIT之后,对线上科学计算功率要求比较高的东西也能够搞了。


四、脚本引擎:QPython


QPython是一个能够在安卓体系上运行Python脚本引擎,整合了Python解说器、Console、编辑器和SL4A库,在安卓设备上你照样能够玩转Python。


五、编辑器:Sublime3


Sublime更新了真·无双·三·零版别之后,有了极大的提高,而且用起来比本来还要简略。配合装置Anaconda或CodeIntel插件,就能够让Sublime具有近乎IDE的体会。Sublime的字体色彩烘托,像VSCodeAtom类的编辑器我总会觉得色彩会有点发乌、不鲜艳,就像在PS做的图拿到浏览器里会不一样,长时间看会不舒服乃至想吐


六、IPython


一个根据Python Shell的交互式解说器。它的自动补全非常好用,乃至用了它之后,很多程序员小伙伴们就不想再用自带的Python shell啦。


关于Python编程需要用什么软件,环球青藤小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚。如果您还想继续了解关于python编程的学习方法及素材等内容,可以点击本站其他文章学习。

7. 用 Python 可以做什么

Python 的用途

1、Web开发

Python的诞生历史比Web还要早,由于Python是一种解释型的脚本语言,开发效率高,所以非常适合用来做Web开发。

Python中也包含许多方便的工具,从调控ssh/sftp用的paramiko,到监控服务用的supervisor,再到bazel等构建工具,甚至conan等用于C++的包管理工具,Python提供了全方位的工具集合,而在这基础上,结合Web,开发方便运维的工具会变得十分简单。

8. python 数据挖掘需要用哪些库和工具

python 数据挖掘常用的库太多了!主要分为以下几大类:
第一数据获取:request,BeautifulSoup
第二基本数学库:numpy
第三 数据库出路 pymongo
第四 图形可视化 matplotlib
第五 树分析基本的库 pandas

数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘本质上像是机器学习和人工智能的基础,它的主要目的是从各种各样的数据来源中,提取出超集的信息,然后将这些信息合并让你发现你从来没有想到过的模式和内在关系。这就意味着,数据挖掘不是一种用来证明假说的方法,而是用来构建各种各样的假说的方法。

想要了解更多有关python 数据挖掘的信息,可以了解一下CDA数据分析师的课程。CDA数据分析师证书的含金量是很高的,简单从两个方面分析一下:首先是企业对于CDA的认可,经管之家CDA LEVEL Ⅲ数据科学家认证证书,属于行业顶尖的人才认证,已获得IBM大数据大学,中国电信,苏宁,德勤,猎聘,CDMS等企业的认可。CDA证书逐渐获得各企业用人单位认可与引进,如中国电信、中国移动、德勤,苏宁,中国银行,重庆统计局等。点击预约免费试听课。

9. python编程开发软件有哪些

Python开发软件可根据其用途不同分为两种,一种是Python代码编辑器,一种是Python集成开发工具,两者的配合使用可以极大的提高

Python开发人员的编程效率,以下是常用的几款Python代码编辑器和Python集成开发工具。

一、Python代码编辑器

1. SublimeText

Sublime Text是一款非常流行的代码编辑器,支持Python代码编辑,同时兼容所有平台,并且丰富的插件扩展了语法和编辑功能,迅捷

小巧,具有良好的兼容性,很受编程人士的喜爱!2. Vim

Vim和Vi是一种模型编辑器,它将文本查看从文本编辑中分离,VIM在原始VI之上做了诸多改进,包括可扩展模型和就地代码构建,

VIMScripts可用于各种Python开发任务!

3. Atom

Atom被称为“21世纪可破解的文本编辑器”,可以兼容所有平台,拥有时尚的界面、文件系统浏览器和扩展插件市场,使用Electron构

建,其运行时安装的扩展插件可支持Python语言!

4. GNU Emacs

GNU Emacs是一款终身免费且兼容任何平台的代码编辑器,使用强大的Lisp编程语言进行定制,并为Python开发提供各种定制脚本,是

一款可扩展、可定制、自动记录、实时显示的编辑器,一直萦绕在UNIX周围。

5. Visual Studio Code

Visual Studio Code是一款兼容Linux、Mac OS X和Windows 平台的全功能代码编辑器,可扩展并且可以对几乎所有任务进行配置,对

于Python的支持可以在Visual Studio Code中安装插件,只需快速点击按钮即可成功安装,且可自动识别Python安装和库。

二、Python集成开发环境

1. PyCharm

PyCharm是唯一一款专门面向Python的全功能集成开发环境,同样拥有付费版和免费开源版,PyCharm不论是在Windows、 Mac OS

X系统中,还是在Linux系统中都支持快速安装和使用。

PyCharm直接支持Python开发环境,打开一个新的文件然后就可以开始编写代码,也可以在PyCharm中直接运行和调试Python程序,

它还支持源码管理和项目,并且其拥有众多便利和支持社区,能够快速掌握学习使用!

2. Eclipse + PyDev

PyDev是Eclipse集成开发环境的一个插件,支持Python调试、代码补全和交互式Python控制台等,在Eclipse中安装PyDev非常便捷,只

需从Eclipse中选择“Help”点击“Eclipse Marketplace”然后搜索PyDev,点击安装,必要的时候重启Eclipse即可,对于资深Eclipse

开发者来说,PyDev可以很轻松上手!

3. Visual Studio

Visual Studio是一款全功能集成开发平台,提供了免费版和付费版,可以支持各种平台的开发,且附带了自己的扩展插件市场。在Visual

Studio中可进行Python编程,并且支持Python智能感知、调试和其他工具,值得注意的是Visual Studio不支持Linux平台!

4. Spyder

Spyder是一款为了数据科学工作流做了优化的开源Python集成开发环境,它是附在Anaconda软件包管理器发行版中的,Spyder拥有大

部分集成开发环境该具备的功能,如强大语法高亮功能的代码编辑器、Python代码补全以及集成文件浏览器,其还具有其他Python编辑

环境中所不具备的变量浏览器功能,十分适合使用Python的数据科学家们。

5. Thonny

Thonny是针对新手的一款集成开发环境,适用于全部主流平台,默认情况下,Thonny会和自带捆绑的Python版本一起安装,十分方便

新手使用!

以上是比较常用的几款Python代码编辑器和Python集成开发环境,Python开发人员、正在学习Python开发以及想从事Python开发工作

人员可以尝试使用一下,选择自己最顺手的开发工具,对以后的工作可以起到事半功倍的效果!

更多学习内容,请点击Python学习网!

阅读全文

与python构建工具相关的资料

热点内容
堵车如何缓解压力 浏览:15
喜鹊快贷app怎么了 浏览:263
海龟编辑器积木编程怎么安装 浏览:185
程序员理发店生意怎么样 浏览:603
程序员罗技 浏览:180
软考初级程序员课程2021下载 浏览:491
杭州程序员奶奶 浏览:880
不听命令造成错误 浏览:981
kool系统源码 浏览:610
流氓app在哪里看 浏览:98
域名购买了怎么指向服务器 浏览:121
安卓手机如何让照片颜色反转 浏览:859
怎么下载卓睿安手机版 浏览:514
h3crange命令 浏览:468
php前景和python 浏览:338
php压缩图片内存大小 浏览:495
在哪里可以查看云服务器的信息 浏览:70
python读取非txt文件 浏览:799
艾莫迅用什么编程软件好 浏览:227
android文件存储读取 浏览:214