导航:首页 > 编程语言 > python新手项目知乎

python新手项目知乎

发布时间:2022-07-24 07:58:07

python 可以做什么 知乎

python现在主要在做web站点(php以前做的工作,例子:豆瓣,知乎)服务器端的服务和系统(比java轻量级,开发迅速,例子,youtube,dropbox,openstack),大数据中的数据处理(报表,maprece)。目前看python的主要方向是取代php以及java在web服务器端的部分份额,以及在海量数据系统中起到处理数据的脚本的功能。

Ⅱ 如何学习python知乎

对于Python的学习人员需要掌握以下技术。
1.网络编程
网络编程在生活和开发中无处不在,哪里有通讯就有网络,它可以称为是一切开发的"基石"。对于所有编程开发人员必须要知其然并知其所以然,所以网络部分将从协议、封包、解包等底层进行深入剖析。
2. 爬虫开发。
将网络一切数据作为资源,通过自动化程序进行有针对性的数据采集以及处理。爬虫开发项目包含跨越防爬虫策略、高性能异步IO、分布式爬虫等,并针对Scrapy框架源码进行深入剖析,从而理解其原理并实现自定义爬虫框架。
3.Web开发。
Web开发包含前端以及后端两大部分,前端部分,带你从"黑白"到"彩色"世界,手把手开发动态网页;后端部分,带你从10行代码开始到n万行来实现并使用自己的微型Web框架,框架讲解中涵盖了数据、组件、安全等多领域的知识,从底层了解其工作原理并可驾驭任何业内主流的Web框架。
4. IT自动化开发。
IT运维自动化是一组将静态的设备结构转化为根据IT服务需求动态弹性响应的策略,目的就是实现减少人工干预、降低人员成本以及出错概率,真刀真枪的带你开发企业中最常用的项目,从设计层面、框架选择、灵活性、扩展性、故障处理、以及如何优化等多个层面接触真实的且来源于各大互联网公司真实案例,如:堡垒机、CMDB、全网监控、主机管理等。
5. 金融分析。
金融分析包含金融知识和Python相关模块的学习,手把手带你从金融小白到开发量化交易策略的大拿。学习内容囊括Numpy\Pandas\Scipy数据分析模块等,以及常见金融分析策略如"双均线"、"周规则交易"、"羊驼策略"、"Dual Thrust 交易策略"等,让梦想照进现实,进入金融行业不再是个梦。
6. 人工智能+机器学习。
人工智能时代来临,率先引入深度机器学习课程。其中包含机器学习的基础概念以及常用知识,如:分类、聚类、回归、神经网络以及常用类库,并根据身边事件作为案例,一步一步经过预处理、建模、训练以及评估和参调等。人工智能是未来科技发展的新趋势,Python作为最主要的编程语言,势必有很好的发展前景,现在学习Python也是一个很好的机会。

Ⅲ 看过了Python基础教程,接下来应该怎么做

第一阶段Python基础与Linux数据库,这是Python的入门阶段,也是帮助零基础学员打好基础的重要阶段,让零基础学员可以具备基础的编程能力,并掌握MySQL进阶内容。同时,学员还可以通过所学知识完成银行自动提款机系统实战、英汉词典、歌词解析器等阶段项目。

第二阶段 WEB全栈,学员可以掌握掌握WEB前端技术内容、WEB后端框架,并熟练使用Flask、Tornado、Django。学完后可以完成爱鲜蜂、数据监控后台的阶段项目。

第三阶段数据分析+人工智能,学员可以掌握爬虫、数据采集,数据机构与算法进阶和人工智能技术。学完后可以完成爬虫攻防、图片马赛克、电影推荐系统、地震预测、人工智能项目等阶段项目。

第四阶段高级进阶,学员可以掌握自动化运维与区块链开发技术,可以完成自动化运维项目、区块链等阶段项目。

Ⅳ 初学者如何学习python如何快速从Python小白到初级Python工程师

制定目标
我的学习历程:我想免费学习Python,因此我必须养成每天的学习习惯(每天4个小时),甚至要利用我的周末。我的总体规划是设定目标并追逐目标。我为7个星期设定了7个目标!
第1周
我的第一周目标-(Python基础知识)作为初学者,我们的第一周目标应该是-熟悉Python基础知识,例如变量,条件,列表,循环,函数。(好奇并探索您可以使用Python进行的操作)。由于我想免费学习python,所以我开始在互联网上进行挖掘,幸运的是发现了一个Python备忘单,对我有很大帮助。
第2周
第二周目标-(提高我的编码能力)解决100多个编码问题。反向字符串,回文,GCD,合并排序数组,If-then-else语句,循环,函数和python软件包问题。“越努力,您就会成为更好的开发者”
第3周
第三周目标-(了解数据结构和算法),提升您的技能和知识,并学习基础知识,例如堆栈,队列,元组,树,字典,链接列表,搜索(线性和二进制搜索),递归函数(阶乘,斐波那契数列),排序(气泡排序,选择排序)和时间复杂度(线性,二次和常数)。
第4周
第四(探索Python库)Python之所以在开发人员中如此受欢迎,是因为其令人赞叹的库可供用户使用。您可以使用的一些最常见的库是Numpy,Scipy,Scikit-learn,Theano,TensorFlow,Keras,PyTorch和Pandas。
OpenCV是计算机视觉库,可为您提供图像处理功能!很酷吧?
SimpleCV,另一个CV库,本质上是OpenCV的子集,但学习曲线要低得多。
我发现个惊人的博客约有56个Python库。
PyGame,一个游戏开发库,可让您制作出色的游戏。
第5周
第五周目标-(学习Python框架)您必须学习至少3个流行的框架。阅读框架文档,在B站上找到视频教程。必须以Numpy,Django,pandas和Scrapy开头。
Django-一个Web应用程序框架。从这里您可以学习Django。
Flask(Python Microframework),另一种流行的Web应用程序框架,更加扎实(因此更加灵活)的Web应用程序开发方法
第6周
第六周目标-(从事Python项目)这是最重要的。在这里,您必须测试并应用您的知识。在第6周,您要做的就是至少处理3个python项目。我知乎分享了我以前的答案,您将在这里获得一些适合初学者和中级学习者的出色python项目:使用Python构建的一些出色项目?
第7周
第七周目标-(Python面试练习)恭喜!现在,您拥有在全球任何一家技术公司中申请任何软件工程工作所需的资源。现在,练习您的软技能,并尽可能练习面试问题。

Ⅳ 有打算学python的新手么

Python是一种计算机程序设计语言。你可能已经听说过很多种流行的编程语言,比如非常难学的C语言,非常流行的Java语言,适合初学者的Basic语言,适合网页编程的JavaScript语言等等。

那Python是一种什么语言?

首先,我们普及一下编程语言的基础知识。用任何编程语言来开发程序,都是为了让计算机干活,比如下载一个MP3,编写一个文档等等,而计算机干活的CPU只认识机器指令,所以,尽管不同的编程语言差异极大,最后都得“翻译”成CPU可以执行的机器指令。而不同的编程语言,干同一个活,编写的代码量,差距也很大。

比如,完成同一个任务,C语言要写1000行代码,Java只需要写100行,而Python可能只要20行。

所以Python是一种相当高级的语言。

你也许会问,代码少还不好?代码少的代价是运行速度慢,C程序运行1秒钟,Java程序可能需要2秒,而Python程序可能就需要10秒。

那是不是越低级的程序越难学,越高级的程序越简单?表面上来说,是的,但是,在非常高的抽象计算中,高级的Python程序设计也是非常难学的,所以,高级程序语言不等于简单。

但是,对于初学者和完成普通任务,Python语言是非常简单易用的。连Google都在大规模使用Python,你就不用担心学了会没用。

learning=input('DoyouwanttolearnPythonnow(YesorNo):')
a=str(learning)
ifa=='Yes':
print('QQ1129834903')
else:
print('Thanks!!')

Ⅵ 深度学习 python怎么入门 知乎

自学深度学习是一个漫长而艰巨的过程。您需要有很强的线性代数和微积分背景,良好的Python编程技能,并扎实掌握数据科学、机器学习和数据工程。即便如此,在你开始将深度学习应用于现实世界的问题,并有可能找到一份深度学习工程师的工作之前,你可能需要一年多的学习和实践。然而,知道从哪里开始,对软化学习曲线有很大帮助。如果我必须重新学习Python的深度学习,我会从Andrew Trask写的Grokking deep learning开始。大多数关于深度学习的书籍都要求具备机器学习概念和算法的基本知识。除了基本的数学和编程技能之外,Trask的书不需要任何先决条件就能教你深度学习的基础知识。这本书不会让你成为一个深度学习的向导(它也没有做这样的声明),但它会让你走上一条道路,让你更容易从更高级的书和课程中学习。用Python构建人工神经元
大多数深度学习书籍都是基于一些流行的Python库,如TensorFlow、PyTorch或Keras。相比之下,《运用深度学习》(Grokking Deep Learning)通过从零开始、一行一行地构建内容来教你进行深度学习。

《运用深度学习》
你首先要开发一个人工神经元,这是深度学习的最基本元素。查斯克将带领您了解线性变换的基本知识,这是由人工神经元完成的主要计算。然后用普通的Python代码实现人工神经元,无需使用任何特殊的库。
这不是进行深度学习的最有效方式,因为Python有许多库,它们利用计算机的图形卡和CPU的并行处理能力来加速计算。但是用普通的Python编写一切对于学习深度学习的来龙去是非常好的。
在Grokking深度学习中,你的第一个人工神经元只接受一个输入,将其乘以一个随机权重,然后做出预测。然后测量预测误差,并应用梯度下降法在正确的方向上调整神经元的权重。有了单个神经元、单个输入和单个输出,理解和实现这个概念变得非常容易。您将逐渐增加模型的复杂性,使用多个输入维度、预测多个输出、应用批处理学习、调整学习速率等等。
您将通过逐步添加和修改前面章节中编写的Python代码来实现每个新概念,逐步创建用于进行预测、计算错误、应用纠正等的函数列表。当您从标量计算转移到向量计算时,您将从普通的Python操作转移到Numpy,这是一个特别擅长并行计算的库,在机器学习和深度学习社区中非常流行。
Python的深度神经网络
有了这些人造神经元的基本构造块,你就可以开始创建深层神经网络,这基本上就是你将几层人造神经元叠放在一起时得到的结果。
当您创建深度神经网络时,您将了解激活函数,并应用它们打破堆叠层的线性并创建分类输出。同样,您将在Numpy函数的帮助下自己实现所有功能。您还将学习计算梯度和传播错误通过层传播校正跨不同的神经元。

随着您越来越熟悉深度学习的基础知识,您将学习并实现更高级的概念。这本书的特点是一些流行的正规化技术,如早期停止和退出。您还将获得自己版本的卷积神经网络(CNN)和循环神经网络(RNN)。
在本书结束时,您将把所有内容打包到一个完整的Python深度学习库中,创建自己的层次结构类、激活函数和神经网络体系结构(在这一部分,您将需要面向对象的编程技能)。如果您已经使用过Keras和PyTorch等其他Python库,那么您会发现最终的体系结构非常熟悉。如果您没有,您将在将来更容易地适应这些库。
在整本书中,查斯克提醒你熟能生巧;他鼓励你用心编写自己的神经网络,而不是复制粘贴任何东西。
代码库有点麻烦
并不是所有关于Grokking深度学习的东西都是完美的。在之前的一篇文章中,我说过定义一本好书的主要内容之一就是代码库。在这方面,查斯克本可以做得更好。
在GitHub的Grokking深度学习库中,每一章都有丰富的jupiter Notebook文件。jupiter Notebook是一个学习Python机器学习和深度学习的优秀工具。然而,jupiter的优势在于将代码分解为几个可以独立执行和测试的小单元。Grokking深度学习的一些笔记本是由非常大的单元格组成的,其中包含大量未注释的代码。

这在后面的章节中会变得尤其困难,因为代码会变得更长更复杂,在笔记本中寻找自己的方法会变得非常乏味。作为一个原则问题,教育材料的代码应该被分解成小单元格,并在关键区域包含注释。
此外,Trask在Python 2.7中编写了这些代码。虽然他已经确保了代码在Python 3中也能顺畅地工作,但它包含了已经被Python开发人员弃用的旧编码技术(例如使用“for i in range(len(array))”范式在数组上迭代)。
更广阔的人工智能图景
Trask已经完成了一项伟大的工作,它汇集了一本书,既可以为初学者,也可以为有经验的Python深度学习开发人员填补他们的知识空白。
但正如泰温·兰尼斯特(Tywin Lannister)所说(每个工程师都会同意),“每个任务都有一个工具,每个工具都有一个任务。”深度学习并不是一根可以解决所有人工智能问题的魔杖。事实上,对于许多问题,更简单的机器学习算法,如线性回归和决策树,将表现得和深度学习一样好,而对于其他问题,基于规则的技术,如正则表达式和几个if-else子句,将优于两者。

关键是,你需要一整套工具和技术来解决AI问题。希望Grokking深度学习能够帮助你开始获取这些工具。
你要去哪里?我当然建议选择一本关于Python深度学习的深度书籍,比如PyTorch的深度学习或Python的深度学习。你还应该加深你对其他机器学习算法和技术的了解。我最喜欢的两本书是《动手机器学习》和《Python机器学习》。
你也可以通过浏览机器学习和深度学习论坛,如r/MachineLearning和r/deeplearning subreddits,人工智能和深度学习Facebook组,或通过在Twitter上关注人工智能研究人员来获取大量知识。
AI的世界是巨大的,并且在快速扩张,还有很多东西需要学习。如果这是你关于深度学习的第一本书,那么这是一个神奇旅程的开始。

Ⅶ 知乎python 爬虫如何入门学习

链接:https://pan..com/s/1wMgTx-M-Ea9y1IYn-UTZaA

提取码:2b6c

课程简介

毕业不知如何就业?工作效率低经常挨骂?很多次想学编程都没有学会?

Python 实战:四周实现爬虫系统,无需编程基础,二十八天掌握一项谋生技能。

带你学到如何从网上批量获得几十万数据,如何处理海量大数据,数据可视化及网站制作。

课程目录

开始之前,魔力手册 for 实战学员预习

第一周:学会爬取网页信息

第二周:学会爬取大规模数据

第三周:数据统计与分析

第四周:搭建 Django 数据可视化网站

......

Ⅷ python好学吗 知乎

首先,对于初学者来说学习Python是不错的选择,一方面Python语言的语法比较简单易学,另一方面Python的实验环境也比较容易搭建。
学习编程是一定需要老师的,我不信谁能无师自通把Python学得多好。至少着急就业的人肯定不会,没人指导很难学成。那么学习Python编程语言难吗?其实学Python不难,比起C语言、C#、 C+ +和JAVA这些编程语言相对容易很多。学习Python编程语言,动手实践是一件非常愉快的事情。
下面给新手学习Python一些建议:
1、先买一本自学用的Python书籍,不要看电子书。
2、对Python基础数据类型有个了解。
3、学会各种类型的操作方法。
4、了解函数和类的概念。
5、动手实践,找小项目练习。
如果你决定了要学习Python技术,就是为了以后能有个高薪工作,而且你对自己学习Python还很自信,建议参加专业的学习。因为你对于工作的迫切需求,你肯定不会像大学那样贪玩不学习,你会极其认真。

Ⅸ 知乎日报 python怎么上手

其实python非常适合初学者入门,上手很容易。
我就是完全通过网上资源学了python的。
最大的是3点经验:
1.找一本浅显易懂,例程比较好的教程,从头到尾看下去。不要看很多本,专注于一本。把里面的例程都手打一遍,搞懂为什么。
2.去找一个实际项目练手。我当时是因为要做一个网站,不得已要学python。这种条件下的效果比你平时学一门新语言要好很多。所以最好是要有真实的项目做。可以找几个同学一起做个网站之类。
3.最好能找到一个已经会python的人。问他一点学习规划的建议,然后在遇到卡壳的地方找他指点。这样会事半功倍。

Ⅹ 小白学python怎么快速入门多久能完成一个项目

电子书集合|数据科学速查表|迁移学习实战 ,免费下载

链接: https://pan..com/s/11qnpoLX1H_XzFB-RdVNG4w 提取码: z9x7


阅读全文

与python新手项目知乎相关的资料

热点内容
进入组策略的命令 浏览:137
python数据结构和内存 浏览:25
python软件功能简介 浏览:784
外国程序员一般多少岁退休 浏览:917
怎么看linux和时间服务器 浏览:680
程序员搞笑花名 浏览:501
dota2怎么设置国服服务器地址 浏览:212
单片机高电平驱动 浏览:115
ios多选文件夹 浏览:909
加强行车调度命令管理 浏览:243
服务器已禁用什么意思 浏览:150
部队命令回复 浏览:755
神奇宝贝服务器地图怎么设置 浏览:382
加密算法输出固定长度 浏览:862
程序员去重庆还是武汉 浏览:121
服务器如何撤销网页登录限制 浏览:980
微信公众平台php开发视频教程 浏览:628
怎么看苹果授权绑定的app 浏览:255
压缩机单级压缩比 浏览:380
linux测试php 浏览:971