❶ 如何用python做爬虫
1)首先你要明白爬虫怎样工作。
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?
很简单
import Queue
initial_page = "初始化页"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example
注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...
那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)
考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www.renmingribao.com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)
有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...
及时更新(预测这个网页多久会更新一次)
如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
“路漫漫其修远兮,吾将上下而求索”。
所以,不要问怎么入门,直接上路就好了:)
❷ 基于python的scrapy爬虫,关于增量爬取是怎么处理的
一、增量爬取的思路:即保存上一次状态,本次抓取时与上次比对,如果不在上次的状态中,便视为增量,保存下来。对于scrapy来说,上一次的状态是抓取的特征数据和上次爬取的 request队列(url列表),request队列可以通过request队列可以通过scrapy.core.scheler的pending_requests成员得到,在爬虫启动时导入上次爬取的特征数据,并且用上次request队列的数据作为start url进行爬取,不在上一次状态中的数据便保存。
二、选用BloomFilter原因:对爬虫爬取数据的保存有多种形式,可以是数据库,可以是磁盘文件等,不管是数据库,还是磁盘文件,进行扫描和存储都有很大的时间和空间上的开销,为了从时间和空间上提升性能,故选用BloomFilter作为上一次爬取数据的保存。保存的特征数据可以是数据的某几项,即监控这几项数据,一旦这几项数据有变化,便视为增量持久化下来,根据增量的规则可以对保存的状态数据进行约束。比如:可以选网页更新的时间,索引次数或是网页的实际内容,cookie的更新等
❸ 知乎python 爬虫如何入门学习
链接:https://pan..com/s/1wMgTx-M-Ea9y1IYn-UTZaA
课程简介
毕业不知如何就业?工作效率低经常挨骂?很多次想学编程都没有学会?
Python 实战:四周实现爬虫系统,无需编程基础,二十八天掌握一项谋生技能。
带你学到如何从网上批量获得几十万数据,如何处理海量大数据,数据可视化及网站制作。
课程目录
开始之前,魔力手册 for 实战学员预习
第一周:学会爬取网页信息
第二周:学会爬取大规模数据
第三周:数据统计与分析
第四周:搭建 Django 数据可视化网站
......
❹ 如何用Python写一个分布式爬虫
学习 基本的爬虫工作原理 基本的http抓取工具,scrapy Bloom Filter: Bloom Filters by Example 如果需要大规模网页抓取,你需要学习分布式爬虫的概念。其实没那么玄乎,你只要学会怎样维护一个所有集群机器能够有效分享的分布式队列就好
❺ 如何入门 Python 爬虫
“入门”是良好的动机,但是可能作用缓慢。如果你手里或者脑子里有一个项目,那么实践起来你会被目标驱动,而不会像学习模块一样慢慢学习。
另外如果说知识体系里的每一个知识点是图里的点,依赖关系是边的话,那么这个图一定不是一个有向无环图。因为学习A的经验可以帮助你学习B。因此,你不需要学习怎么样“入门”,因为这样的“入门”点根本不存在!你需要学习的是怎么样做一个比较大的东西,在这个过程中,你会很快地学会需要学会的东西的。当然,你可以争论说需要先懂python,不然怎么学会python做爬虫呢?但是事实上,你完全可以在做这个爬虫的过程中学习python :D看到前面很多答案都讲的“术”——用什么软件怎么爬,那我就讲讲“道”和“术”吧——爬虫怎么工作以及怎么在python实现。
先长话短说总结一下。你需要学习:
基本的爬虫工作原理
基本的http抓取工具,scrapy
Bloom Filter: Bloom
如果需要大规模网页抓取,你需要学习分布式爬虫的概念。其实没那么玄乎,你只要学会怎样维护一个所有集群机器能够有效分享的分布式队列就好。最简单的实现是python-rq: https: //github.com /nvie/rqrq和Scrapy的结合:darkrho/scrapy-redis · GitHub后续处理,网页析取(grangier/python-goose · GitHub),存储(Mongodb)以下是短话长说。说说当初写的一个集群爬下整个豆瓣的经验吧。
1)首先你要明白爬虫怎样工作
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?很简单:
Python
import Queue
initial_page = "http:/ /www. renminribao. com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的urlstore(current_url) #把这个url代表的网页存储好for next_url in extract_urls(current_url): #提取把这个url里链向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
import Queue
initial_page = "http:/ / www.renminribao .com"url_queue = Queue.Queue()seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的urlstore(current_url) #把这个url代表的网页存储好for next_url in extract_urls(current_url): #提取把这个url里链向的urlif next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter。简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了…那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成:
Python
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www. renmingribao .com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www. renmingribao .com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub4)展望及后处理虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛…及时更新(预测这个网页多久会更新一次)如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,“路漫漫其修远兮,吾将上下而求索”。
❻ 如何评价慕课网课程《Python分布式爬虫打造搜索引擎 》
听说还可以,我没有购买,所以不清楚
课程大纲
说真的,你再也没有理由学不会爬虫了
从0开始讲解爬虫基本原理讲精讲透最流行爬虫框架Scrapy从单机爬虫到分布式爬虫爬取知名网站真实数据打造自己的搜索引擎从0讲解爬虫基本原理,对爬虫中所需要用到的知识点进行梳理,从搭建开发环境、设计数据库开始,通过爬取三个知名网站的真实数据,带你由浅入深的掌握Scrapy原理、各模块使用、组件开发,Scrapy的进阶开发以及反爬虫的策略
彻底掌握Scrapy之后,带你基于Scrapy、Redis、elasticsearch和django打造一个完整的搜索引擎网站
大纲:第1章 课程介绍介绍课程目标、通过课程能学习到的内容、和系统开发前需要具备的知识
第2章 windows下搭建开发环境介绍项目开发需要安装的开发软件、 python虚拟virtualenv和 virtualenvwrapper的安装和使用、 最后介绍pycharm和navicat的简单使用
第3章 爬虫基础知识回顾介绍爬虫开发中需要用到的基础知识包括爬虫能做什么,正则表达式,深度优先和广度优先的算法及实现、爬虫url去重的策略、彻底弄清楚unicode和utf8编码的区别和应用。
第4章 scrapy爬取知名技术文章网站搭建scrapy的开发环境,本章介绍scrapy的常用命令以及工程目录结构分析,本章中也会详细的讲解xpath和css选择器的使用。然后通过scrapy提供的spider完成所有文章的爬取。然后详细讲解item以及item loader方式完成具体字段的提取后使用scrapy提供的pipeline分别将数据保存到json文件以及mysql数据库中。…
第5章 scrapy爬取知名问答网站本章主要完成网站的问题和回答的提取。本章除了分析出问答网站的网络请求以外还会分别通过requests和scrapy的FormRequest两种方式完成网站的模拟登录, 本章详细的分析了网站的网络请求并分别分析出了网站问题回答的api请求接口并将数据提取出来后保存到mysql中。…
第6章 通过CrawlSpider对招聘网站进行整站爬取本章完成招聘网站职位的数据表结构设计,并通过link extractor和rule的形式并配置CrawlSpider完成招聘网站所有职位的爬取,本章也会从源码的角度来分析CrawlSpider让大家对CrawlSpider有深入的理解。
第7章 Scrapy突破反爬虫的限制本章会从爬虫和反爬虫的斗争过程开始讲解,然后讲解scrapy的原理,然后通过随机切换user-agent和设置scrapy的ip代理的方式完成突破反爬虫的各种限制。本章也会详细介绍httpresponse和httprequest来详细的分析scrapy的功能,最后会通过云打码平台来完成在线验证码识别以及禁用cookie和访问频率来降低爬虫被屏蔽的可能性。…
第8章 scrapy进阶开发本章将讲解scrapy的更多高级特性,这些高级特性包括通过selenium和phantomjs实现动态网站数据的爬取以及将这二者集成到scrapy中、scrapy信号、自定义中间件、暂停和启动scrapy爬虫、scrapy的核心api、scrapy的telnet、scrapy的web service和scrapy的log配置和email发送等。 这些特性使得我们不仅只是可以通过scrapy来完成…
第9章 scrapy-redis分布式爬虫Scrapy-redis分布式爬虫的使用以及scrapy-redis的分布式爬虫的源码分析, 让大家可以根据自己的需求来修改源码以满足自己的需求。最后也会讲解如何将bloomfilter集成到scrapy-redis中。
第10章 elasticsearch搜索引擎的使用本章将讲解elasticsearch的安装和使用,将讲解elasticsearch的基本概念的介绍以及api的使用。本章也会讲解搜索引擎的原理并讲解elasticsearch-dsl的使用,最后讲解如何通过scrapy的pipeline将数据保存到elasticsearch中。
第11章 django搭建搜索网站本章讲解如何通过django快速搭建搜索网站, 本章也会讲解如何完成django与elasticsearch的搜索查询交互。
第12章 scrapyd部署scrapy爬虫本章主要通过scrapyd完成对scrapy爬虫的线上部署。
第13章 课程总结重新梳理一遍系统开发的整个过程, 让同学对系统和开发过程有一个更加直观的理解
❼ 如何用python写布隆过滤器
下面的是网络上找到的python的布隆过滤器的实现.
#!/usr/local/bin/python2.7
#coding=gbk
'''
Createdon2012-11-7
@author:palydawn
'''
importcmath
fromBitVectorimportBitVector
classBloomFilter(object):
def__init__(self,error_rate,elementNum):
#计算所需要的bit数
self.bit_num=-1*elementNum*cmath.log(error_rate)/(cmath.log(2.0)*cmath.log(2.0))
#四字节对齐
self.bit_num=self.align_4byte(self.bit_num.real)
#分配内存
self.bit_array=BitVector(size=self.bit_num)
#计算hash函数个数
self.hash_num=cmath.log(2)*self.bit_num/elementNum
self.hash_num=self.hash_num.real
#向上取整
self.hash_num=int(self.hash_num)+1
#产生hash函数种子
self.hash_seeds=self.generate_hashseeds(self.hash_num)
definsert_element(self,element):
forseedinself.hash_seeds:
hash_val=self.hash_element(element,seed)
#取绝对值
hash_val=abs(hash_val)
#取模,防越界
hash_val=hash_val%self.bit_num
#设置相应的比特位
self.bit_array[hash_val]=1
#检查元素是否存在,存在返回true,否则返回false
defis_element_exist(self,element):
forseedinself.hash_seeds:
hash_val=self.hash_element(element,seed)
#取绝对值
hash_val=abs(hash_val)
#取模,防越界
hash_val=hash_val%self.bit_num
#查看值
ifself.bit_array[hash_val]==0:
returnFalse
returnTrue
#内存对齐
defalign_4byte(self,bit_num):
num=int(bit_num/32)
num=32*(num+1)
returnnum
#产生hash函数种子,hash_num个素数
defgenerate_hashseeds(self,hash_num):
count=0
#连续两个种子的最小差值
gap=50
#初始化hash种子为0
hash_seeds=[]
forindexinxrange(hash_num):
hash_seeds.append(0)
forindexinxrange(10,10000):
max_num=int(cmath.sqrt(1.0*index).real)
flag=1
fornuminxrange(2,max_num):
ifindex%num==0:
flag=0
break
ifflag==1:
#连续两个hash种子的差值要大才行
ifcount>0and(index-hash_seeds[count-1])<gap:
continue
hash_seeds[count]=index
count=count+1
ifcount==hash_num:
break
returnhash_seeds
defhash_element(self,element,seed):
hash_val=1
forchinstr(element):
chval=ord(ch)
hash_val=hash_val*seed+chval
returnhash_val
'''
#测试代码
bf=BloomFilter(0.001,1000000)
element='palydawn'
bf.insert_element(element)
printbf.is_element_exist('palydawn')'''
#其中使用了BitVector库,python本身的二进制操作看起来很麻烦,这个就简单多了
如果解决了您的问题请采纳!
如果未解决请继续追问
❽ python中数据结构方面有哪些好用的第三方库
1、图有牛逼的networkx
Creating a graph
2、bloomfileter
Welcome to Python BloomFilter’s documentation!