Ⅰ python 多进程和多线程配合
由于python的多线程中存在PIL锁,因此python的多线程不能利用多核,那么,由于现在的计算机是多核的,就不能充分利用计算机的多核资源。但是python中的多进程是可以跑在不同的cpu上的。因此,尝试了多进程+多线程的方式,来做一个任务。比如:从中科大的镜像源中下载多个rpm包。
#!/usr/bin/pythonimport reimport commandsimport timeimport multiprocessingimport threadingdef download_image(url):
print '*****the %s rpm begin to download *******' % url
commands.getoutput('wget %s' % url)def get_rpm_url_list(url):
commands.getoutput('wget %s' % url)
rpm_info_str = open('index.html').read()
regu_mate = '(?<=<a href=")(.*?)(?=">)'
rpm_list = re.findall(regu_mate, rpm_info_str)
rpm_url_list = [url + rpm_name for rpm_name in rpm_list] print 'the count of rpm list is: ', len(rpm_url_list) return rpm_url_
def multi_thread(rpm_url_list):
threads = [] # url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
# rpm_url_list = get_rpm_url_list(url)
for index in range(len(rpm_url_list)): print 'rpm_url is:', rpm_url_list[index]
one_thread = threading.Thread(target=download_image, args=(rpm_url_list[index],))
threads.append(one_thread)
thread_num = 5 # set threading pool, you have put 4 threads in it
while 1:
count = min(thread_num, len(threads)) print '**********count*********', count ###25,25,...6707%25
res = [] for index in range(count):
x = threads.pop()
res.append(x) for thread_index in res:
thread_index.start() for j in res:
j.join() if not threads:
def multi_process(rpm_url_list):
# process num at the same time is 4
process = []
rpm_url_group_0 = []
rpm_url_group_1 = []
rpm_url_group_2 = []
rpm_url_group_3 = [] for index in range(len(rpm_url_list)): if index % 4 == 0:
rpm_url_group_0.append(rpm_url_list[index]) elif index % 4 == 1:
rpm_url_group_1.append(rpm_url_list[index]) elif index % 4 == 2:
rpm_url_group_2.append(rpm_url_list[index]) elif index % 4 == 3:
rpm_url_group_3.append(rpm_url_list[index])
rpm_url_groups = [rpm_url_group_0, rpm_url_group_1, rpm_url_group_2, rpm_url_group_3] for each_rpm_group in rpm_url_groups:
each_process = multiprocessing.Process(target = multi_thread, args = (each_rpm_group,))
process.append(each_process) for one_process in process:
one_process.start() for one_process in process:
one_process.join()# for each_url in rpm_url_list:# print '*****the %s rpm begin to download *******' %each_url## commands.getoutput('wget %s' %each_url)
def main():
url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
url_paas = 'http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/'
url_paas2 ='http://mirrors.ustc.e.cn/fedora/development/26/Server/x86_64/os/Packages/u/'
start_time = time.time()
rpm_list = get_rpm_url_list(url_paas) print multi_process(rpm_list) # print multi_thread(rpm_list)
#print multi_process()
# print multi_thread(rpm_list)
# for index in range(len(rpm_list)):
# print 'rpm_url is:', rpm_list[index]
end_time = time.time() print 'the download time is:', end_time - start_timeprint main()123456789101112131415161718
代码的功能主要是这样的:
main()方法中调用get_rpm_url_list(base_url)方法,获取要下载的每个rpm包的具体的url地址。其中base_url即中科大基础的镜像源的地址,比如:http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/,这个地址下有几十个rpm包,get_rpm_url_list方法将每个rpm包的url地址拼出来并返回。
multi_process(rpm_url_list)启动多进程方法,在该方法中,会调用多线程方法。该方法启动4个多进程,将上面方法得到的rpm包的url地址进行分组,分成4组,然后每一个组中的rpm包再最后由不同的线程去执行。从而达到了多进程+多线程的配合使用。
代码还有需要改进的地方,比如多进程启动的进程个数和rpm包的url地址分组是硬编码,这个还需要改进,毕竟,不同的机器,适合同时启动的进程个数是不同的。
Ⅱ Python中的多进程与多线程/分布式该如何使用
Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情。
借助这个包,可以轻松完成从单进程到并发执行的转换。
1、新建单一进程
如果我们新建少量进程,可以如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
p = multiprocessing.Process(target=func, args=("hello", ))
p.start()
p.join()
print "Sub-process done."12345678910111213
2、使用进程池
是的,你没有看错,不是线程池。它可以让你跑满多核CPU,而且使用方法非常简单。
注意要用apply_async,如果落下async,就变成阻塞版本了。
processes=4是最多并发进程数量。
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
for i in xrange(10):
msg = "hello %d" %(i)
pool.apply_async(func, (msg, ))
pool.close()
pool.join()
print "Sub-process(es) done."12345678910111213141516
3、使用Pool,并需要关注结果
更多的时候,我们不仅需要多进程执行,还需要关注每个进程的执行结果,如下:
import multiprocessing
import time
def func(msg):
for i in xrange(3):
print msg
time.sleep(1)
return "done " + msg
if __name__ == "__main__":
pool = multiprocessing.Pool(processes=4)
result = []
for i in xrange(10):
msg = "hello %d" %(i)
result.append(pool.apply_async(func, (msg, )))
pool.close()
pool.join()
for res in result:
print res.get()
print "Sub-process(es) done."
2014.12.25更新
根据网友评论中的反馈,在Windows下运行有可能崩溃(开启了一大堆新窗口、进程),可以通过如下调用来解决:
multiprocessing.freeze_support()1
附录(自己的脚本):
#!/usr/bin/python
import threading
import subprocess
import datetime
import multiprocessing
def dd_test(round, th):
test_file_arg = 'of=/zbkc/test_mds_crash/1m_%s_%s_{}' %(round, th)
command = "seq 100 | xargs -i dd if=/dev/zero %s bs=1M count=1" %test_file_arg
print command
subprocess.call(command,shell=True,stdout=open('/dev/null','w'),stderr=subprocess.STDOUT)
def mds_stat(round):
p = subprocess.Popen("zbkc mds stat", shell = True, stdout = subprocess.PIPE)
out = p.stdout.readlines()
if out[0].find('active') != -1:
command = "echo '0205pm %s round mds status OK, %s' >> /round_record" %(round, datetime.datetime.now())
command_2 = "time (ls /zbkc/test_mds_crash/) 2>>/round_record"
command_3 = "ls /zbkc/test_mds_crash | wc -l >> /round_record"
subprocess.call(command,shell=True)
subprocess.call(command_2,shell=True)
subprocess.call(command_3,shell=True)
return 1
else:
command = "echo '0205 %s round mds status abnormal, %s, %s' >> /round_record" %(round, out[0], datetime.datetime.now())
subprocess.call(command,shell=True)
return 0
#threads = []
for round in range(1, 1600):
pool = multiprocessing.Pool(processes = 10) #使用进程池
for th in range(10):
# th_name = "thread-" + str(th)
# threads.append(th_name) #添加线程到线程列表
# threading.Thread(target = dd_test, args = (round, th), name = th_name).start() #创建多线程任务
pool.apply_async(dd_test, (round, th))
pool.close()
pool.join()
#等待线程完成
# for t in threads:
# t.join()
if mds_stat(round) == 0:
subprocess.call("zbkc -s",shell=True)
break
Ⅲ 简述python进程,线程和协程的区别及应用场景
协程多与线程进行比较
1) 一个线程可以多个协程,一个进程也可以单独拥有多个协程,这样python中则能使用多核CPU。
2) 线程进程都是同步机制,而协程则是异步
3) 协程能保留上一次调用时的状态,每次过程重入时,就相当于进入上一次调用的状态
Ⅳ python如何开多进程,在每条进程里再开多线程
办法很多。通常的办法是,子线程出异常后,主进程检查到它的状态不正常,然后自己主动将其余线程退出,最后自己再退出。这是稳妥的办法。
另外的办法是,某一个子线程专用于监控状态。它发现状态不对时,直接强制进程退出。办法1,发消息给主进程,让主进程退出。办法2:用kill, pskill等方法,直接按进程PID杀进程。
Ⅳ python中多进程和多线程的区别
什么是线程、进程?
进程(process)与线程(thread)是操作系统的基本概念,它们比较抽象,不容易掌握。
关于这两者,最经典的一句话就是“进程是资源分配的最小单位,线程是CPU调度的最小单位”,线程是程序中一个单一的顺序控制流程,进程内一个相对独立的、可调度的执行单元,是系统独立调度和分配CPU的基本单位指运行中的程序的调度单位,在单个程序中同时运行多个线程完成不同的工作,称为多线程。
进程与线程的区别是什么?
进程是资源分配的基本单位,所有与该进程有关的资源,都被记录在进程控制块PCB中,以表示该进程拥有这些资源或正在使用它们,另外,进程也是抢占处理机的调度单位,它拥有一个完整的虚拟地址空间,当进程发生调度时,不同的进程拥有不同的虚拟地址空间,而同一进程内的不同线程共享同一地址空间。
与进程相对应的,线程与资源分配无关,它属于某一个进程,并与进程内的其他线程一起共享进程的资源,线程只由相关堆栈(系统栈或用户栈)寄存器和线程控制表TCB组成,寄存器可被用来存储线程内的局部变量,但不能存储其他线程的相关变量。
通常在一个进程中可以包含若干个线程,它们可以利用进程所拥有的资源,在引入线程的操作系统中,通常都是把进程作为分配资源的基本单位,而把线程作为独立运行和独立调度的基本单位。
由于线程比进程更小,基本上不拥有系统资源,所以对它的调度所付出的开销就会小得多,能更高效的提高系统内多个程序间并发执行的程度,从而显着提高系统资源的利用率和吞吐量。
因而近年来推出的通用操作系统都引入了线程,以便进一步提高系统的并发性,并把它视为现代操作系统的一个重要指标。
Ⅵ Python 进程,线程,协程,锁机制,你知多少
1.线程和进程:
线程是属于进程的,线程运行在进程空间内,同一进程所产生的线程共享同一内存空间,当进程退出时该进程所产生的线程都会被强制退出并清除。线程可与属于同一进程的其它线程共享进程所拥有的全部资源,但是其本身基本上不拥有系统资源,只拥有一点在运行中必不可少的信息(如程序计数器、一组寄存器和栈)。
2.线程、进程与协程:
线程和进程的操作是由程序触发系统接口,最后的执行者是系统;协程的操作则是程序员
协程存在的意义:对于多线程应用,CPU通过切片的方式来切换线程间的执行,线程切换时需要耗时(保持状态,下次继续)。协程,则只使用一个线程,在一个线程中规定某个代码块执行顺序。
协程的适用场景: 当程序中存在大量不需要CPU的操作时(IO),适用于协程;
Ⅶ Python多线程是什么意思
多线程能让你像运行一个独立的程序一样运行一段长代码。这有点像调用子进程(subprocess),不过区别是你调用shu的是一个函数或者一个类,而不是独立的程序。
程基本上是一个独立执行流程。单个进程可以由多个线程组成。程序中的每个线程都执行特定的任务。例如,当你在电脑上玩游戏时,比如说国际足联,整个游戏是一个单一的过程。,但它由几个线程组成,负责播放音乐、接收用户的输入、同步运行对手等。所有这些都是单独的线程,负责在同一个程序中执行这些不同的任务。
每个进程都有一个始终在运行的线程。这是主线。这个主线程实际上创建子线程对象。子线程也由主线程启动。
Ⅷ Python中进程与线程的区别是什么
Num01–>线程
线程是操作系统中能够进行运算调度的最小单位。它被包含在进程之中,是进程中的实际运作单位。
一个线程指的是进程中一个单一顺序的控制流。
一个进程中可以并发多条线程,每条线程并行执行不同的任务。
Num02–>进程
进程就是一个程序在一个数据集上的一次动态执行过程。
进程有以下三部分组成:
1,程序:我们编写的程序用来描述进程要完成哪些功能以及如何完成。
2,数据集:数据集则是程序在执行过程中需要的资源,比如图片、音视频、文件等。
3,进程控制块:进程控制块是用来记录进程的外部特征,描述进程的执行变化过程,系统可以用它来控制和管理进程,它是系统感知进程存在的唯一标记。
Num03–>进程和线程的区别:
1、运行方式不同:
进程不能单独执行,它只是资源的集合。
进程要操作CPU,必须要先创建一个线程。
所有在同一个进程里的线程,是同享同一块进程所占的内存空间。
2,关系
进程中第一个线程是主线程,主线程可以创建其他线程;其他线程也可以创建线程;线程之间是平等的。
进程有父进程和子进程,独立的内存空间,唯一的标识符:pid。
3,速度
启动线程比启动进程快。
运行线程和运行进程速度上是一样的,没有可比性。
线程共享内存空间,进程的内存是独立的。
4,创建
父进程生成子进程,相当于复制一份内存空间,进程之间不能直接访问
创建新线程很简单,创建新进程需要对父进程进行一次复制。
一个线程可以控制和操作同级线程里的其他线程,但是进程只能操作子进程。
5,交互
同一个进程里的线程之间可以直接访问。
两个进程想通信必须通过一个中间代理来实现。
相关推荐:《Python视频教程》
Num04–>几个常见的概念
1,什么的并发和并行?
并发:微观上CPU轮流执行,宏观上用户看到同时执行。因为cpu切换任务非常快。
并行:是指系统真正具有同时处理多个任务(动作)的能力。
2,同步、异步和轮询的区别?
同步任务:B一直等着A,等A完成之后,B再执行任务。(打电话案例)
轮询任务:B没有一直等待A,B过一会来问一下A,过一会问下A
异步任务:B不需要一直等着A, B先做其他事情,等A完成后A通知B。(发短信案例)
Num05–>进程和线程的优缺点比较
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现Master-Worker,主线程就是Master,其他线程就是Worker。
多进程模式最大的优点就是稳定性高,因为一个子进程崩溃了,不会影响主进程和其他子进程。(当然主进程挂了所有进程就全挂了,但是Master进程只负责分配任务,挂掉的概率低)着名的Apache最早就是采用多进程模式。
多进程模式的缺点是创建进程的代价大,在Unix/Linux系统下,用fork调用还行,在Windows下创建进程开销巨大。另外,操作系统能同时运行的进程数也是有限的,在内存和CPU的限制下,如果有几千个进程同时运行,操作系统连调度都会成问题。
多线程模式通常比多进程快一点,但是也快不到哪去,而且,多线程模式致命的缺点就是任何一个线程挂掉都可能直接造成整个进程崩溃,因为所有线程共享进程的内存。在Windows上,如果一个线程执行的代码出了问题,你经常可以看到这样的提示:“该程序执行了非法操作,即将关闭”,其实往往是某个线程出了问题,但是操作系统会强制结束整个进程。
在Windows下,多线程的效率比多进程要高,所以微软的IIS服务器默认采用多线程模式。由于多线程存在稳定性的问题,IIS的稳定性就不如Apache。为了缓解这个问题,IIS和Apache现在又有多进程+多线程的混合模式,真是把问题越搞越复杂。
Num06–>计算密集型任务和IO密集型任务
是否采用多任务的第二个考虑是任务的类型。我们可以把任务分为计算密集型和IO密集型。
第一种:计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。
计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。
第二种:任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。
IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。
相关推荐:
Python中的进程是什么