导航:首页 > 编程语言 > java中值滤波

java中值滤波

发布时间:2022-07-25 09:33:31

① 中值滤波

中值滤波是把所取范围内所有像素的值取平均,然后设置为当前像素的值,例如,如果当前像素位置为(3, 3),那么就是把以它为中心的3*3范围的像素值取平均设置为(3,3)的值

是每个像素都是这样处理的~
也就是说,你不能直接在原图像上改,而是要新建一个图像来做~

② 谁能帮我按照下面的java程序做个小软件,以便我来处理数据:

花了点时间理解你的程序,稍微做了些修改,不知是否满意:
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.FileOutputStream;
import java.io.OutputStreamWriter;
import java.util.Arrays;
import java.util.Scanner;
import javax.swing.JButton;
import javax.swing.JFileChooser;
import javax.swing.JDialog;
import javax.swing.JTextField;

public class Filter{
/**
* 中值滤波宽度,滤波范围的一半
*/
private static int N = 1;
Scanner sc = null;
Array data = new Array();
Array data1 = new Array();
Array data2 = new Array();
Filter(){
JFileChooser jfc = new JFileChooser();
int returnval = jfc.showDialog(null, "要处理的文件");
if(returnval != JFileChooser.APPROVE_OPTION)
System.exit(0);
try {
sc = new Scanner(jfc.getSelectedFile());
} catch (Exception e) {
e.printStackTrace();
System.exit(-1);
}
final JDialog jd = new JDialog();
jd.setTitle("滤波常量");
final JTextField jtf = new JTextField();
jtf.setText(String.valueOf(N));
jd.add(jtf,"Center");
JButton jb = new JButton("设置");
jb.addActionListener(new ActionListener(){
public void actionPerformed(ActionEvent arg0) {
N = Integer.valueOf(jtf.getText());
jd.setVisible(false);
}
});
jd.add(jb,"East");
jd.pack();
jd.setVisible(true);
while(jd.isVisible())
try{
Thread.sleep(1000);
}catch(InterruptedException e){}
while(sc.hasNextDouble())
data.append(sc.nextDouble());
for(int i = 0 ; i<N ; i++)
data1.append(data.at(i));
for(int j=N;j<data.length-N;j++){
double[] temp = new double[2*N+1];
for(int i = 0,k=j-N;k<=j+N;k++){
temp[i]=data.at(k);
i++;
}
Arrays.sort(temp);
data1.append(temp[N]);
}
for(int i = 0;i<N;i++)
data1.append(data.at(data.length-N+i));

returnval = jfc.showDialog(null, "滤波后输出文件");
OutputStreamWriter osw = null;
if(returnval != JFileChooser.APPROVE_OPTION)
for(int i=0;i<data1.length;i++){
System.out.println(data1.at(i));
}
else
try {
osw = new OutputStreamWriter(
new FileOutputStream(
jfc.getSelectedFile()));
StringBuilder sb = new StringBuilder();
for(int i = 0;i<data1.length;i++)
sb.append(data1.at(i)).append(" ");
osw.write(sb.toString());
osw.close();
} catch (Exception e) {
e.printStackTrace();
}

double t=data1.max-data1.min;
for(int i=0;i<data1.length;i++){
double m=(data1.at(i)-data1.min)/t;
data2.append(m);
}

returnval = jfc.showDialog(null, "归一化处理后输出文件");
if(returnval != JFileChooser.APPROVE_OPTION)
for(int i=0;i<data1.length;i++){
System.out.println(data2.at(i));
}
else
try {
osw = new OutputStreamWriter(
new FileOutputStream(
jfc.getSelectedFile()));
StringBuilder sb = new StringBuilder();
for(int i = 0;i<data2.length;i++)
sb.append(data2.at(i)).append(" ");
osw.write(sb.toString());
osw.close();
} catch (Exception e) {
e.printStackTrace();
}
System.exit(0);
}
public static void main(String[] args){
Filter filter = new Filter();
}
class Array{
double[] data = new double[0x1000];
int length = 0;
double max = Double.MIN_VALUE;
double min = Double.MAX_VALUE;
void append(double n){
if(n>max)
max = n;
if(n<min)
min = n;
try{
data[length] = n;
length++;
}catch(IndexOutOfBoundsException e){
data = Arrays.Of(data, length+0x1000);
data[length++] = n;
}
}
double at(int i){
return data[i];
}
}
}

③ 急!!,二值化后的图像,用JAVA中值滤波算法,去除椒盐噪点!!!

椒盐噪声的话一般可以用中值滤波器去除, 中值滤波器很容易实现, 依此遍历图像中每个像素点, 每个像素点与其周围的8个点像素值做一下排序操作, 找到这九个点中的中值点赋给当前遍历点的像素就可以了, 算法很简单吧. 我这有c++的源码, 楼主要想要的话发邮件到我的邮箱[email protected]我可以把程序发给你.

④ java语言进行图象处理的问题/

...做出来拿人民币了

⑤ 请问中值滤波与均值滤波各自的优缺点

均值滤波和中值滤波的内容非常基础,均值滤波相当于低通滤波,有将图像模糊化的趋势,对椒盐噪声基本无能为力。中值滤波的优点是可以很好的过滤掉椒盐噪声,缺点是易造成图像的不连续性。通过下面三张图可以清楚看到以上两种滤波方法的差异。

利用均值滤波处理后,椒盐噪声被处理成了小的气泡,但与此同时图像开始变得模糊。

拓展资料:

中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。二维中值滤波输出为g(x,y)=med{f(x-k,y-l),(k,l∈W)} ,其中,f(x,y),g(x,y)分别为原始图像和处理后图像。W为二维模板,通常为3*3,5*5区域,也可以是不同的的形状,如线状,圆形,十字形,圆环形等。

均值滤波也称为线性滤波,其采用的主要方法为邻域平均法。线性滤波的基本原理是用均值代替原图像中的各个像素值,即对待处理的当前像素点(x,y),选择一个模板,该模板由其近邻的若干像素组成,求模板中所有像素的均值,再把该均值赋予当前像素点(x,y),作为处理后图像在该点上的灰度g(x,y),即g(x,y)=1/m ∑f(x,y) m为该模板中包含当前像素在内的像素总个数。

⑥ Java图像去噪怎么实现

流程不外乎是

  1. 读取图像文件;

  2. 扫描噪点;

  3. 去除噪点;

  4. 保存图像文件。

    Java2D操作好像使用BufferedImage读取图像文件最方便,有一阵没弄这了,忘了。应该可以读取JPG,PNG,GIF图像。

    识别噪点应该有专门的算法,我没研究过,网络一下应该能找到专门算法,然后写段代码就可以。我个人以为是独立一个像素与周围一定范围内的像素差异过大,就认为是噪点。可以有亮度,色相上的差别。BufferedImage可以读取每个像素的RGB,从而能识别色相的差别;还有个矩阵,用来由RGB计算亮度的,也就可以计算亮度差别了,这个网上都能找到。

    输出也使用BufferedImage就可以。

    关键是每个像素都要和周围像素比较,还要计算亮度,最少是三重循环了,如何提高效率是个大问题了。这个代码写好了也算一个高手了。

⑦ java手写体英文数字识别系统 识别预处理如何实现 采用什么语言比较好

转载1 引言

手写体数字识别是文字识别中的一个研究课题,是多年来的研究热点,也是模式识别领域中最成功的应用之一。由于识别类型较少,在实际生活中有深远的应用需求,一直得到广泛的重视。近年来随着计算机技术和数字图像处理技术的飞速发展,数字识别在电子商务、机器自动输入等场合已经获得成功的实际应用。尽管人们对手写数字的研究己从事了很长时间的研究,并己取得了很多成果,但到目前为止,机器的识别本领还无法与人的认知能力相比,这仍是一个有难度的开放问题,所以对手写数字识别的进一步研究,寻求如何更高效更准确更节能地实现手写数字的自动录入和识别的解决方案对提高经济效益、推动社会发展都有深远的意义。

近年来, 人工神经网技术发展十分迅速, 它具有模拟人类部分形象思维的能力, 为模式识别开辟了新的途径, 成了模拟人工智能的一种重要方法,特别是它的信息并行分布式处理能力和自学习功能等显着优点, 更是激起了人们对它的极大的兴趣。BP(Back Propagation)网络是神经网络中一种,是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,可以很好地解决非线性问题,在函数逼近、模式识别和数据压缩等方面都有很广泛的应用。我们在认真地研究了神经网络的基本原理和机制的基础上, 结合手写体数字识别这一具体课题, 提出了用BP神经网络方法来实现手写体数字识别的方案。

2 手写体数字识别概述

2.1 手写数字识别简述

模式识别是六十年代初迅速发展起来的一门学科。由于它研究的是如何用机器来实现人及某些动物对事物的学习、识别和判断能力,因而受到了很多科技领域研究人员的注意,成为人工智能研究的一个重要方面。

字符识别是模式识别的一个传统研究领域。从50年代开始,许多的研究者就在这一研究领域开展了广泛的探索,并为模式识别的发展产生了积极的影响。

手写体数字识别是多年来的研究热点也是字符识别中的一个特别问题。手写体数字识别在特定的环境下,如邮政编码自动识别系统,税表和银行支票自动处理系统等一般情况。当涉及到数字识别时,人们往往要求识别器有很高的识别可靠性,特别是有关金额的数字识别时,如支票中填写的金额部分,更是如此。因此针对这类问题的处理系统设计的关键环节之一就是设计出高可靠性和高识别率的手写体数字识别方法。这个领域取得了飞速的发展,部分是由于更好的学习算法,部分是由于更优良的训练集。美国国家科学学会(NIST)建立了

一个包含60000个经过标注的数字的数据库,它已经成为对新的学习算法进行比较的性能测试标准。然而可以说还没有哪个手写体数字识别器达到完美的识别效果。

在过去的数十年中,研究者们提出了许许多多的识别方法,按使用的特征不同,这些方法可以分为两类:基于结构特征的方法和基于统计特征的方法。统计特征通常包括点密度的测量、矩、特征区域等。结构特征通常包括园、端点、交叉点、笔划、轮廓等,一般来说,两类特征各有优势。例如,使用统计特征的分类器易于训练,而且对于使用统计特征的分类器,在给定的训练集上能够得到相对较高的识别率;而结构特征的主要优点之一是能描述字符的结构,在识别过程中能有效地结合几何和结构的知识,因此能够得到可靠性较高的识别结果。本文针对手写数字识别选用BP神经网络这种基于传统统计学基础上的分类方法,用于分割和识别,并取得了较好的识别效果。

2.2 手写数字识别的一般过程

手写体数字识别的过程如图2-1所示,一般分为预处理、特征提取、数字串的分割、分类器、等模块。原始图像是通过光电扫描仪,CCD器件或电子传真机等获得的二维图像信号。预处理包括对原始图像的去噪、倾斜校正或各种滤波处理。手写体数字具有随意性,其字符大小、字间距、字内距变化很大,分割难度较大。手写数字串的分割是其中最重要的环节,是制约识别率的瓶颈所在。去噪是预处理中极重要的环节。系统面对的是从实际环境中切分出的字符图像,可能有粘连的边框、随机的墨点、切分不正确引入的其他字符笔划等使前景点增加的噪声,还可能有断线等使背景增加的噪声,目前适应各种环境的通用去噪算法还不成熟。预处理中的规格化也不仅仅是同比例的放缩,它不仅要保持拓扑不变,更要最大限度地突出所取特征。在众多应用环境中,特征提取、分类器、多分类器集成是整个识别系统的核心。大体上来说特征可以分为结构特征和统计特征两类。由于分类器的选择取决于所提取的特征,因此相应的识别方法便有结构方法和统计方法。

总之,从手写体数字识别原理可见,手写体数字识别技术主要包括以下几点:

1)图像预处理,包括彩色图像转成灰度图像、二值化,归一化,滤除干扰噪声等;

2)基于数字图像的特征选择和提取;

3)数字串的分割;

4)模式分类识别。

其中,第二和第四部分是手写数字识别的重点,直接关系到识别的准确率和效率,也是本论文研究的重点所在。

结果图2-1 识别流程

2.3 手写数字识别的一般方法及比较

手写数字识别在学科上属于模式识别和人工智能的范畴。在过去的四十年中,人们提出了很多办法获取手写字符的关键特征,提出了许多识别方法和识别技术。这些手段分两大类:

全局分析和结构分析。

多年的研究实践表明,对于完全没有限制的手写数字,几乎可以肯定:没有一种简单的方案能达到很高的识别率和识别精度,因此,最近这方面的努力向着更为成熟、复杂、综合的方向发展。研究工作者努力把新的知识运用到预处理,特征提取,分类当中。近年来,人工智能中专家系统方法、人工神经网络方法已应用于手写数字识别。在手写数字识别的研究中,神经网络技术和多种方法的综合是值得重视的方向。

针对模式特征的不同选择及其判别决策方法的不同,可将模式识别方法大致分为5大类这5种识别方法均可实现手写数字识别,但它们特点不同,必须根据条件进行选择。

(1)统计模式法

这是以同类模式具有相同属性为基础的识别方法。用来描述事物属性的参量叫做待征,它可以通过模式的多个样本的测量值统计分析后按一定准则来提取。例如:在手写数字识别系统中,我们可以把每个数字的图形分为若干个小方块(图),然后统计每一小方块中的黑像素构成一个多维特征矢量,作为该数字的特征。必须注意的是:在选择特征时,用于各类模式的特征应该把同类模式的各个样本聚集在一起,而使不同类模式的样本尽量分开,以保证识别系统能具有足够高的识别率。

(2)句法结构方法

在形式语言和自动机的基础上产生了句法结构这一方法。其基本原理是:对每一个模式都用一个句法来表示,而对一个待识别的未知样本,通过抽取该样本的基元来构造该样本的句子,然后分析此句子满足什么样的句法,从而推断出他该属于哪个模式类。这种方法的优点是它能反映模式的结构特征,而且对模式的结构特征变换不敏感,因此比较适合联机识别。但是由于抽取字符的基元比较困难,因而不是特别适合用于脱机识别,同时这一方法的理论基础还不可靠,抗干扰能力比较弱。

(3)逻辑特征法

就是其特征的选择对一类模式识别问题来说是独一无二的,即在一类问题中只有1个模式具有某1种(或某1组合的)逻辑特征,此方法律立了关于知识表示及组织,目标搜索及匹配的完整体系;对需通过众多规则的推理达到识别目标的问题,有很好的效果,但当样品有缺损,背景不清晰,规则不明确甚至有歧义时,效果不好。

(4)模糊模式方法

就是在模式识别过程中引入了模糊集的概念,由于隶属度函数作为样品与模板相似程度的量度,故能反映整体的、主要的特性,模糊模式有相当不匀称的抗干扰与畸变,从而允许样品有相当程度的干扰与畸变,但准确合理的隶属度函数往往难以建立。目前有学者在研究,并将其引入神经网络方法形成模糊神经网络识别系统。

(5)神经网络方法

就是使用人工神经网络方法实现模式识别。可处理某些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,允许样品有较大的缺损、畸变。神经网络方法的缺点是其模型在不断丰富完善中,目前能识别的模式类不够多,神经网络方法允许样品有较大的缺损和畸变,其运行速度快,自适应性能好,具有较高的分辨率。

上述几种识别方法各有特点。结构法比较直观,能较好反映事物的结构特性:问题是基元的提取很不容易,各基元的关系也比较复杂,抗干扰性能也较差。统计法用计算机来抽取特征,比较方便,抗干扰性能强;缺点是没有充分利用模式的结构特性。神经网络方法由于处理的并行性,可以快速同时处理大容量的数据,工作时具有高速度和潜在超高速,并且,网络的最终输出是由所有神经元共同作用的结果,一个神经元的错误对整体的影响很小,所以其容错性也非常的好。基于以上的考虑,本文的手写数字识别采用了神经网络的方法。

3 图像预处理与特征提取

手写体图像数据在没有进行一定的图像预处理和特征提取之前,不能立即应用到程序中进行神经网络训练和字符识别工作。从图像处理角度来说,手写体的字符识别对字符是不是有颜色是不关心的,而对此图像的清晰度是很关心的。所以在图像进行一系列的图像处理工作是很有必要的。图像的预处理是正确、有效提取图像特征的基础,有效的图像特征作为网络的输入值才能进行正确的神经网络训练和最终得到正确、有效的网络权重。

3.1 数字图像预处理

3.1.1 灰度化处理

彩色图像包含了大量的颜色信息,不但在存储上开销很大,在处理上也会降低系统的执行速度,因此在对图像进行识别等处理中经常将彩色图像转变为灰度图像,以加快处理速度。由彩色转换为灰度的过程称为灰度化处理。灰度图像就是只有强度信息而没有颜色信息的图像,存储灰度图像只需要一个数据矩阵,矩阵每个元素表示对应位置像素的灰度值。彩色图像的像素色为RGB(R,G,B),灰度图像的像素色为RGB(r,r,r) ,R,G,B可由彩色图像的颜色分解获得。而R,G,B的取值范围是0-255,所以灰度的级别只有256级。灰度化的处理方法主要有如下三种:最大值法、平均值法和加权平均值法。本文用到的加权平均值法来处理,即更换每个像素的颜色索引(即按照灰度映射表换成灰度值)。 权重选择参数为:

红:0.299

绿:0.587

蓝:0.114

例如某像素点颜色对应的灰度值计算公式为:

NewPixColor?(BYTE)(0299*Red?0.587*Green?0.114*Blue) 系统输入的源图像支持3通道或者4通道图像,支持Format24bppRgb, format32bppRgb, Format32bppArgb和Format8bppIndex这4种像素格式。

3.1.2 二值化处理

二值图像是指整幅图像画面内仅黑、白二值的图像。在数字图像处理中,二值图像占有非常重要的地位。在实际的识别系统中,进行图像二值变换的关键是要确定合适的阈值,使得字符与背景能够分割开来,二值变换的结果图像必须要具备良好的保形性,不丢掉有用的形状信息,不会产生额外的空缺等等。采用二值图像进行处理,能大大地提高处理效率。 二值化的关键在于阈值的选取,阈值的选取方法主要有三类:全局阈值法、局部阈值法、动态阈值法。全局阀值二值化方法是根据图像的直方图或灰度的空间分布确定一个阀值,并根据该阀值实现灰度图像到二值化图像的转化。全局阀值方法的优点在于算法简单,对于目标和背景明显分离、直方图分布呈双峰的图像效果良好,但对输入图像量化噪声或不均匀光照等情况抵抗能力差,应用受到极大限制。局部阀值法则是由像素灰度值和像素周围点局部

灰度特性来确定像素的阀值的。Bernsen算法是典型的局部阀值方法,非均匀光照条件等情况虽然影响整体图像的灰度分布却不影响局部的图像性质,局部阀值法也存在缺点和问题,如实现速度慢、不能保证字符笔划连通性、以及容易出现伪影现象等。动态阀值法的阀值选择不仅取决于该像素灰度值以及它周围像素的灰度值,而且还和该像素的坐标位置有关,由于充分考虑了每个像素邻域的特征,能更好的突出背景和目标的边界,使相距很近的两条线不会产生粘连现象。在图像分割二值化中,自动闽值选取问题是图像分割的关键所在。事实证明,闽值的选择的恰当与否对分割的效果起着决定性的作用。

本文采用全局阈值的方法,实现将图像二值化的功能。如果某个像素的值大于等于阈值,该像素置为白色;否则置为黑色。系统程序目前仅支持8bpp灰度图像的转换,阈值介于0~255之间,程序中取220。

3.1.3 去离散噪声

原始图像可能夹带了噪声,去噪声是图像处理中常用的手法。通常去噪用滤波的方法,比如中值滤波、均值滤波,本文中去除离散噪声点采用中值滤波的方法。中值滤波法是一种非线性平滑技术,它将每一象素点的灰度值设置为该点某邻域窗口内的所有象素点灰度值的中值,让周围的像素值接近的真实值,从而消除孤立的噪声点。

3.1.4 字符分割

在识别时系统只能根据每个字符的特征来进行判断,为了最终能准确识别手写体数字,必须将单个字符从处理后的图像中逐个提取分离出来。具体做法是将图像中待识别的字符逐个分离出来并返回存放各个字符的位置信息的链表。当把图像分割完成后,从一定意义上来说便是形成了不同的小图,每一张小图就是一个数字,才能对这些小图进行尺寸大小一致的调整。

3.1.5 细化

3.2 图像特征提取

特征提取是字符识别中的一个重要组成部分,是模式识别的核心之一。经过预处理后,根据识别方法的要求抽取图像特征,作为识别的依据。一般而言,选择的特征一方面要求能够足够代表这个图像模式,另一方面要求它们的数量尽可能少,这样能有效地进行分类和较小的计算量。特征提取的好坏会直接影响其识别的分类效果,进而影响识别率,因此特征选择是模式识别的关键。但是,目前还没有一个有效的、一般的抽取、选择特征的方法。抽取、选择特征的方法都是面对问题的,因此针对不同的识别问题往往有不止一种的抽取、选择特征的方法。

⑧ 在Android中实现图片锐化,中值滤波,变为黑白灰度图。在java中可实现,但在Android中一些import 出错。

有可能是两个包有相同的方法,但功能和参数有所不同,要修改的是,你把所有import都删除掉,再重新导包,按Ctrl+Shift+O快捷键,所需要的包就导进去了,如果有两种选择的时候,如果还有重复,那么你可能有两个相同属性和方法的包在项目的Lib里面的,只是版本不同,那么你又把一个删除。再编译就OK了

⑨ 中值滤波的定义

中值滤波对脉冲噪声有良好的滤除作用,特别是在滤除噪声的同时,能够保护信号的边缘,使之不被模糊。这些优良特性是线性滤波方法所不具有的。此外,中值滤波的算法比较简单,也易于用硬件实现。所以,中值滤波方法一经提出后,便在数字信号处理领得到重要的应用。
中值滤波方法:对一个数字信号序列xj(-∞<j<∞)进行滤波处理时,首先要定义一个长度为奇数的L长窗口,L=2N+1,N为正整数。设在某一个时刻,窗口内的信号样本为x(i-N),…,x(i),…,x(i+N),其中x(i)为位于窗口中心的信号样本值。对这L个信号样本值按从小到大的顺序排列后,其中值,在i处的样值,便定义为中值滤波的输出值,写为如图1.
中值滤波是在“最小绝对误差”准则下的最优滤波。
在实际应用中,随着所选用窗口长度的增加,滤波的计算量将会迅速增加。因此,寻求中值滤波的快速算法,是中值滤波理论的一个重要研究内容。中值滤波的快速算法,一般采用下述三种方式:①直方图数据修正法;②样本值二进制表示逻辑判断法;③数字和模拟的选择网络法。
对中值滤波的理论研究,还集中于统计特性分析和根序列的描述方面。当一个信号序列经一特定窗口长度的中值滤波反复处理后,它会收敛于某一个不再变化的序列,这个序列称为中值滤波的根序列。根序列是描述中值滤波特性的一个重要概念。通过对根序列结构的研究,可以确定原信号序列中,哪些成分可以经中值滤波后保留下来,哪些成分将被抑制。这对确定中值滤波器的窗口长度,提供了重要依据。用VLSI实现的中值滤波器芯片,可供实时处理中应用。

⑩ 何谓中值滤波有何特点

中值滤波是对一个滑动窗口内的诸像素灰度值排序,用其中值代替窗口中心象素的原来灰度值,它是一种非线性的图像平滑法,它对脉冲干扰级椒盐噪声的抑制效果好,在抑制随机噪声的同时能有效保护边缘少受模糊。

中值滤波经常用于去除图像或者其它信号中的噪声。这个设计思想就是检查输入信号中的采样并判断它是否代表了信号,使用奇数个采样组成的观察窗实现这项功能。观察窗口中的数值进行排序,位于观察窗中间的中值作为输出。然后,丢弃最早的值,取得新的采样,重复上面的计算过程。

(10)java中值滤波扩展阅读:

中值滤波是基于排序统计理论的一种能有效抑制噪声的非线性信号处理技术,中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替,让周围的像素值接近的真实值,从而消除孤立的噪声点。方法是用某种结构的二维滑动模板,将板内像素按照像素值的大小进行排序,生成单调上升(或下降)的为二维数据序列。

阅读全文

与java中值滤波相关的资料

热点内容
程序员搞笑花名 浏览:501
dota2怎么设置国服服务器地址 浏览:212
单片机高电平驱动 浏览:115
ios多选文件夹 浏览:909
加强行车调度命令管理 浏览:243
服务器已禁用什么意思 浏览:150
部队命令回复 浏览:755
神奇宝贝服务器地图怎么设置 浏览:382
加密算法输出固定长度 浏览:862
程序员去重庆还是武汉 浏览:121
服务器如何撤销网页登录限制 浏览:980
微信公众平台php开发视频教程 浏览:628
怎么看苹果授权绑定的app 浏览:255
压缩机单级压缩比 浏览:380
linux测试php 浏览:971
什么时候梁旁边需要加密箍筋 浏览:40
微信清粉软件源码 浏览:717
matlabdoc命令 浏览:550
如何去ping服务器 浏览:75
ecshop安装php55 浏览:817