导航:首页 > 编程语言 > Python做径向图

Python做径向图

发布时间:2022-07-25 20:45:07

① 常用的十大python图像处理工具

原文标题:10 Python image manipulation tools.
作者 | Parul Pandey
翻译 | 安其罗乔尔、JimmyHua
今天,在我们的世界里充满了数据,图像成为构成这些数据的重要组成部分。但无论是用于何种用途,这些图像都需要进行处理。图像处理就是分析和处理数字图像的过程,主要旨在提高其质量或从中提取一些信息,然后可以将其用于某种用途。
图像处理中的常见任务包括显示图像,基本操作如裁剪、翻转、旋转等,图像分割,分类和特征提取,图像恢复和图像识别。Python成为这种图像处理任务是一个恰当选择,这是因为它作为一种科学编程语言正在日益普及,并且在其生态系统中免费提供许多最先进的图像处理工具供大家使用。
让我们看一下可以用于图像处理任务中的常用 Python 库有哪些吧。

1.scikit-image
scikit-image是一个开源的Python包,适用于numpy数组。它实现了用于研究,教育和工业应用的算法和实用工具。即使是那些刚接触Python生态系统的人,它也是一个相当简单直接的库。此代码是由活跃的志愿者社区编写的,具有高质量和同行评审的性质。
资源
文档里记录了丰富的例子和实际用例,阅读下面的文档:
http://scikit-image.org/docs/stable/user_guide.html
用法
该包作为skimage导入,大多数功能都在子模块中找的到。下面列举一些skimage的例子:
图像过滤

使用match_template函数进行模板匹配

你可以通过此处查看图库找到更多示例。
2. Numpy
Numpy是Python编程的核心库之一,并为数组提供支持。图像本质上是包含数据点像素的标准Numpy数组。因此,我们可以通过使用基本的NumPy操作,例如切片、掩膜和花式索引,来修改图像的像素值。可以使用skimage加载图像并使用matplotlib显示图像。
资源
Numpy的官方文档页面提供了完整的资源和文档列表:
http://www.numpy.org/
用法
使用Numpy来掩膜图像.

3.Scipy
scipy是Python的另一个类似Numpy的核心科学模块,可用于基本的图像操作和处理任务。特别是子模块scipy.ndimage,提供了在n维NumPy数组上操作的函数。该包目前包括线性和非线性滤波,二值形态学,B样条插值和对象测量等功能函数。
资源
有关scipy.ndimage包提供的完整功能列表,请参阅下面的链接:
https://docs.scipy.org/doc/scipy/reference/tutorial/ndimage.html#correlation-and-convolution
用法
使用SciPy通过高斯滤波器进行模糊:

4. PIL/ Pillow
PIL( Python图像库 )是Python编程语言的一个免费库,它支持打开、操作和保存许多不同的文件格式的图像。然而, 随着2009年的最后一次发布,它的开发停滞不前。但幸运的是还有有Pillow,一个PIL积极开发的且更容易安装的分支,它能运行在所有主要的操作系统,并支持Python3。这个库包含了基本的图像处理功能,包括点运算、使用一组内置卷积核的滤波和色彩空间的转换。
资源
文档中有安装说明,以及涵盖库的每个模块的示例:
https://pillow.readthedocs.io/en/3.1.x/index.html
用法
在 Pillow 中使用 ImageFilter 增强图像:

5. OpenCV-Python
OpenCV( 开源计算机视觉库 )是计算机视觉应用中应用最广泛的库之一 。OpenCV-Python 是OpenCV的python版API。OpenCV-Python的优点不只有高效,这源于它的内部组成是用C/C++编写的,而且它还容易编写和部署(因为前端是用Python包装的)。这使得它成为执行计算密集型计算机视觉程序的一个很好的选择。
资源
OpenCV-Python-Guide指南可以让你使用OpenCV-Python更容易:
https://github.com/abidrahmank/OpenCV2-Python-Tutorials
用法
下面是一个例子,展示了OpenCV-Python使用金字塔方法创建一个名为“Orapple”的新水果图像融合的功能。

6. SimpleCV
SimpleCV 也是一个用于构建计算机视觉应用程序的开源框架。有了它,你就可以访问几个高性能的计算机视觉库,如OpenCV,而且不需要先学习了解位深度、文件格式、颜色空间等。
它的学习曲线大大小于OpenCV,正如它们的口号所说“计算机视觉变得简单”。一些支持SimpleCV的观点有:
即使是初学者也可以编写简单的机器视觉测试摄像机、视频文件、图像和视频流都是可互操作的资源
官方文档非常容易理解,而且有大量的例子和使用案例去学习:
https://simplecv.readthedocs.io/en/latest/
用法

7. Mahotas
Mahotas 是另一个计算机视觉和图像处理的Python库。它包括了传统的图像处理功能例如滤波和形态学操作以及更现代的计算机视觉功能用于特征计算,包括兴趣点检测和局部描述符。该接口是Python语言,适合于快速开发,但是算法是用C语言实现的,并根据速度进行了调优。Mahotas库速度快,代码简洁,甚至具有最小的依赖性。通过原文阅读它们的官方论文以获得更多的了解。
资源
文档包括安装指导,例子,以及一些教程,可以更好的帮助你开始使用mahotas。
https://mahotas.readthedocs.io/en/latest/install.html
用法
Mahotas库依赖于使用简单的代码来完成任务。关于‘Finding Wally’的问题,Mahotas做的很好并且代码量很少。下面是源码
https://mahotas.readthedocs.io/en/latest/wally.html

8. SimpleITK
ITK 或者 Insight Segmentation and Registration Toolkit是一个开源的跨平台系统,为开发人员提供了一套广泛的图像分析软件工具 。其中, SimpleITK是建立在ITK之上的简化层,旨在促进其在快速原型设计、教育、解释语言中的应用。SimpleITK 是一个图像分析工具包,包含大量支持一般过滤操作、图像分割和匹配的组件。SimpleITK本身是用C++写的,但是对于包括Python以内的大部分编程语言都是可用的。
资源
大量的Jupyter Notebooks 表明了SimpleITK在教育和研究领域已经被使用。Notebook展示了用Python和R编程语言使用SimpleITK来进行交互式图像分析。
http://insightsoftwareconsortium.github.io/SimpleITK-Notebooks/
用法
下面的动画是用SimpleITK和Python创建的刚性CT/MR匹配过程的可视化 。点击此处可查看源码!

9. pgmagick
pgmagick是GraphicsMagick库的一个基于python的包装。 GraphicsMagick图像处理系统有时被称为图像处理的瑞士军刀。它提供了一个具有强大且高效的工具和库集合,支持以88种主要格式(包括重要格式,如DPX、GIF、JPEG、JPEG-2000、PNG、PDF、PNM和TIFF)读取、写入和操作图像。
资源
有一个专门用于PgMagick的Github库 ,其中包含安装和需求说明。还有关于这个的一个详细的用户指导:
https://github.com/hhatto/pgmagick
用法
使用pgmagick可以进行的图像处理活动很少,比如:
图像缩放

边缘提取

10. Pycairo
Pycairo是图像处理库cairo的一组Python捆绑。Cairo是一个用于绘制矢量图形的2D图形库。矢量图形很有趣,因为它们在调整大小或转换时不会失去清晰度 。Pycairo是cairo的一组绑定,可用于从Python调用cairo命令
资源
Pycairo的GitHub库是一个很好的资源,有关于安装和使用的详细说明。还有一个入门指南,其中有一个关于Pycairo的简短教程。
库:https://github.com/pygobject/pycairo指南:https://pycairo.readthedocs.io/en/latest/tutorial.html用法
使用Pycairo绘制线条、基本形状和径向梯度:

总结
有一些有用且免费的Python图像处理库可以使用,有的是众所周知的,有的可能对你来说是新的,试着多去了解它们。

② python opencv怎么去除图像畸变

计算机视觉——使用OpenCV进行摄像机标定

摄像机标定程序中用到的OpenCV函数

使用OpenCV进行摄像机标定

摄像头标定

摄像机标定(Cameracalibration)笔记

OPENCV的摄像机标定

OPENCV版本的摄像机标定

图像畸变校正OPENCV

镜头桶形失真校正算法

基​于​O​p​e​n​C​V​的​非​线​性​图​像​畸​变​校​正​研​究

摄像机标定和图像径向畸变校正

图像处理中消除相机透镜畸变和视角变换

opencv鸟瞰图变化实例

LearningOpenCV

关于图像透射变换的一点总结

关于透视变换与标定的问题请教

PerspectiveTransform+CropiniOSwithOpenCV

code:

③ 前端:培训机构出来的基本都能找到工作吗

第一 在哪里学习前端靠谱点??

我个人的经验是不要去小机构,没有保障,学习缺乏持续性,不知道哪天老板就溜了,学习前端可以找大型的机构进行学习,稳定有保障啊。学习嘛,我们就得学个放心,以前我学前端在我们当地小县城报了个小机构,里面的老师水平一般,也没学到多少东西,当时想先试听他们的课程,他们老板不愿意,就报名进去学了,结果发现不是那么回事,后来我就离开了那家机构,我表哥给我说了一个互联网免费直播课,我去听了,在那里学会的。

第二 学前端去实体好还是去网络平台学习好?

首先还是我前边说的那个,学前端去实体的话,可以去大型的连锁教育机构,但是费用是非常的高的两三万,如果你经济条件比较优越的话,可以去的。也可以在网络平台进行学习,一般七八千左右的支出吧,一般是晚上开课,不会耽误白天的工作和学习,也有录播提供。至于哪个好,各有优劣,这个没法比较,无论是网上还是实体的,只要是正规的大机构都可以。

第三 好或者不好,可以去体验一下,实践得真知。

我个人是从网上的直播平台学会的这门技术,别的平台怎么样,我没有去体验过,没有发言权,我听的这个前端直播平台还行,每天晚上都有免费直播课,老师讲的通俗易懂,很多自学的时候一直搞不明白的问题,听听老师讲的,就感觉醍醐灌顶的感觉,想听这个这个老师课的同学,可以进入他的前端教程资料裙:首先位于开头的一组数字是:655,其次处于中间地带的一组数字是:567,最后位于尾部的一组数字是:613,把以上三组数字按照先后顺序组合起来即可。对前端感兴趣又不知道何去何从的小伙伴,可以去听一下,肯定有很多的收获,毕竟是哥们实践出来的,前人栽树后人乘凉嘛。

④ 陈文的研究方向

l 计算力学算法和软件,包括径向基函数无网格方法、微分求积法、结构动力学刚性问题算法、弹性动力学和热传导反问题、边界元、非线性矩阵计算、基于Python Scripting的符号-数值编程语言和环境等;研发振动和噪声工程分析软件。
l 软物质(又被称为“复杂流体”。例如,土壤、多孔岩体、胶体、薄膜、颗粒物质、泡沫、生命物质、聚合物熔液、液晶、石油等)复杂力学行为的分数阶导数建模和理论,包括介观尺度物理学原理,非常规统计(Levy统计、分数阶布朗运动、伸展高斯分布等),超声医学图像检测的力学仿真,湍流的分数阶导数和豪斯道夫导数的间歇性统计微分方程、雷诺方程建模、岩土力学本构模型、“反常”扩散。
l 水工结构仿真、损伤检测、安全评估和修复技术。 Distinguished Fellow of ICCES (2014),第五届中国侨界贡献奖(创新人才)(2014)、南京市十大科技之星(2013)、江苏省“333人才工程”第二层次(2013)、江苏省政协委员(2013)、江苏省特聘教授(重点资助,2012)、国家杰出青年科学基金(2011)、HumboldtResearchFellowshipfor Experienced Researchers (2009)、杜庆华工程计算方法奖(2009)、Australian Leadership Awards (ALA) Fellowship(2008)、教育部“新世纪优秀人才支持计划”(2006)、JSPSResearch Fellowship Award (Japan, 1998-2000)、Motorola奖学金(1997)、Siemens奖学金(1995)、光华一等奖学金(1995);撰写英文学术专着1部、中文学术专着3部,授权软件着作权12项、发明专利3项、实用新型专利1项,申请发明专利6项;发表SCI论文130余篇,SCI他人引用1300余次,单篇他引最高120余次。我们发表在Journal of Computational Physics,235:52-66的论文在该期刊2013年2月至2015年5月发表的所有1630篇论文中SCI引用数排名第一;发表在PhysicaA-Statistical Mechanics and its Applications, 388(21):4586-4592的论文在该期刊2009年至2014年6月发表的所有3386篇论文中SCI引用数排名第四;发表在Journal of Marine Science and Technology, 17(3):157-163的论文在该期刊2009年9月至2015年5月发表的所有528篇论文中SCI引用数排名第四;发表在Computers & Mathematics with Applications, 43(3-5):379-391的论文在该期刊2002年至2014年6月发表的所有5414篇论文中SCI引用数排名第六;发表在Engineering Analysis with Boundary Elements, 26(6):489-494的论文在该杂志2002年至2014年6月发表的所有1592篇论文中SCI引用数排名第十四;发表在Journal of the Acoustical Society of America, 115(6):1424-1430的论文在该杂志2004年至2014年6月发表的所有8034篇论文中SCI引用数排名第六十四。
有6年海外研究工作经历,在十几个国家参加过50余次学术会议并有5次短期学术访问;15个会议的国际学术委员会成员,1个海外国际会议的共同主席,10余个国内外会议邀请报告和6个大会报告,4个国际和2个国内学术会议的组织者(细节看学术活动);在大学、国立研究所、工业研究所等研究机构的力学、工业产品设计、科学计算等不同学科单位工作(见简历),主持了18个和参与了7个应用基础和工业应用研究项目;与不同学术背景的研究人员有广泛的接触,理解他们的思维方式和专业语言。但主要研究内容始终以应用力学为中心。这是因为力学是一个交叉型应用基础学科,可以在很多不同技术领域发挥用武之地。2004年回国前的研究工作请点击。

⑤ 哪位朋友能介绍一下支持向量机工具libsvm的用法

LIBSVM的简单介绍 2006-09-20 15:59:48
大 中 小
1. LIBSVM 软件包简介
LIBSVM 是台湾大学林智仁(Chih-Jen Lin)博士等开发设计的一个操作简单、易于使用、快速有效的通用SVM 软件包,可以解决分类问题(包括C- SVC、n - SVC )、回归问题(包括e - SVR、n - SVR )以及分布估计(one-class-SVM )等问题,提供了线性、多项式、径向基和S形函数四种常用的核函数供选择,可以有效地解决多类问题、交叉验证选择参数、对不平衡样本加权、多类问题的概率估计等。LIBSVM 是一个开源的软件包,需要者都可以免费的从作者的个人主页http://www.csie.ntu.e.tw/~cjlin/
处获得。他不仅提供了LIBSVM的C++语言的算法源代码,还提供了Python、java、R、MATLAB、Perl、Ruby、LabVIEW以及C#.net 等各种语言的接口,可以方便的在Windows 或UNIX 平台下使用。另外还提供了WINDOWS 平台下的可视化操作工具SVM-toy,并且在进行模型参数选择时可以绘制出交叉验证精度的等高线图。
2. LIBSVM 使用方法简介
LibSVM是以源代码和可执行文件两种方式给出的。如果是Windows系列操作系统,可以直接使用软件包提供的程序,也可以进行修改编译;如果是Unix类系统,必须自己编译。
LIBSVM 在给出源代码的同时还提供了Windows操作系统下的可执行文件,包括:进行支持向量机训练的svmtrain.exe;根据已获得的支持向量机模型对数据集进行预测的svmpredict.exe;以及对训练数据与测试数据进行简单缩放操作的svmscale.exe。它们都可以直接在DOS 环境中使用。如果下载的包中只有C++的源代码,则也可以自己在VC等软件上编译生成可执行文件。

3. LIBSVM 使用的一般步骤是:
1) 按照LIBSVM软件包所要求的格式准备数据集;
2) 对数据进行简单的缩放操作;
3) 考虑选用RBF 核函数;
4) 采用交叉验证选择最佳参数C与g ;
5) 采用最佳参数C与g 对整个训练集进行训练获取支持向量机模型;
6) 利用获取的模型进行测试与预测。

4. LIBSVM使用的数据格式
1)训练数据和检验数据文件格式如下:
<label> <index1>:<value1> <index2>:<value2> ...
其中<label> 是训练数据集的目标值,对于分类,它是标识某类的整数(支持多个类);对于回归,是任意实数。<index> 是以1开始的整数,可以是不连续的;<value>为实数,也就是我们常说的自变量。检验数据文件中的label只用于计算准确度或误差,如果它是未知的,只需用一个数填写这一栏,也可以空着不填。
在程序包中,还包括有一个训练数据实例:heart_scale,方便参考数据文件格式以及练习使用软件。可以编写小程序,将自己常用的数据格式转换成这种格式

2)Svmtrain和Svmpredict的用法
LIBSVM软件提供的各种功能都是DOS命令执行方式。我们主要用到两个程序,svmtrain(训练建模)和svmpredict(使用已有的模型进行预测),下面分别对这两个程序的使用方法、各参数的意义以及设置方法做一个简单介绍:
(1)Svmtrain的用法:
svmtrain [options] training_set_file [model_file]
Options:可用的选项即表示的涵义如下
-s svm类型:SVM设置类型(默认0)
0 -- C-SVC
1 --v-SVC
2 – 一类SVM
3 -- e -SVR
4 -- v-SVR
-t 核函数类型:核函数设置类型(默认2)
0 – 线性:u'v
1 – 多项式:(r*u'v + coef0)^degree
2 – RBF函数:exp(-r|u-v|^2)
3 –sigmoid:tanh(r*u'v + coef0)
-d degree:核函数中的degree设置(默认3)
-g 函数设置(默认1/ k)r(gama):核函数中的
-r coef0:核函数中的coef0设置(默认0)
-c cost:设置C-SVC, -SVR的参数(默认1)-SVR和
- SVR的参数(默认0.5)-SVC,一类SVM和-n nu:设置
-SVR-p e:设置的值(默认0.1)中损失函数
-m cachesize:设置cache内存大小,以MB为单位(默认40)
-e :设置允许的终止判据(默认0.001)
-h shrinking:是否使用启发式,0或1(默认1)
-wi C(C-SVC中的C)(默认1)weight:设置第几类的参数C为weight
-v n: n-fold交互检验模式
其中-g选项中的k是指输入数据中的属性数。option -v 随机地将数据剖分为n部分并计算交互检验准确度和均方根误差。以上这些参数设置可以按照SVM的类型和核函数所支持的参数进行任意组合,如果设置的参数在函数或SVM类型中没有也不会产生影响,程序不会接受该参数;如果应有的参数设置不正确,参数将采用默认值。training_set_file是要进行训练的数据集;model_file是训练结束后产生的模型文件,文件中包括支持向量样本数、支持向量样本以及lagrange系数等必须的参数;该参数如果不设置将采用默认的文件名,也可以设置成自己惯用的文件名。
(2)Svmpredict的用法:
svmpredict test_file model_file output_file
model_file 是由svmtrain产生的模型文件;test_file是要进行预测的数据文件;Output_file是svmpredict的输出文件。svm-predict没有其它的选项。
下面是具体的使用例子
svmtrain -s 0 -c 1000 -t 1 -g 1 -r 1 -d 3 data_file
训练一个由多项式核(u'v+1)^3和C=1000组成的分类器。
svmtrain -s 1 -n 0.1 -t 2 -g 0.5 -e 0.00001 data_file =-SVM (在RBF核函数exp(-0.5|u-v|^2)和终止允许限0.00001的条件下,训练一个 0.1)分类器。 svmtrain -s 3 -p 0.1 -t 0 -c 10 data_file =以线性核函数u'v和C=10及损失函数 0.1求解SVM回归。

⑥ 人工智能是学习什么

1、学习并掌握一些数学知识

高等数学是基础中的基础,一切理工科都需要这个打底,数据挖掘、人工智能、模式识别此类跟数据打交道的又尤其需要多元微积分运算基础。

线性代数很重要,一般来说线性模型是你最先要考虑的模型,加上很可能要处理多维数据,你需要用线性代数来简洁清晰的描述问题,为分析求解奠定基础。

概率论、数理统计、随机过程更是少不了,涉及数据的问题,不确定性几乎是不可避免的,引入随机变量顺理成章,相关理论、方法、模型非常丰富。很多机器学习的算法都是建立在概率论和统计学的基础上的,比如贝叶斯分类器、高斯隐马尔可夫链。

再就是优化理论与算法,除非你的问题是像二元一次方程求根那样有现成的公式,否则你将不得不面对各种看起来无解但是要解的问题,优化将是你的GPS为你指路。

以上这些知识打底,就可以开拔了,针对具体应用再补充相关的知识与理论,比如说一些我觉得有帮助的是数值计算、图论、拓扑,更理论一点的还有实/复分析、测度论,偏工程类一点的还有信号处理、数据结构。

2、掌握经典机器学习理论和算法

如果有时间可以为自己建立一个机器学习的知识图谱,并争取掌握每一个经典的机器学习理论和算法,我简单地总结如下:

1) 回归算法:常见的回归算法包括最小二乘法(OrdinaryLeast Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(MultivariateAdaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing);

2) 基于实例的算法:常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM);

3) 基于正则化方法:常见的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic Net);

4) 决策树学习:常见的算法包括:分类及回归树(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 随机森林(Random Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM);

5) 基于贝叶斯方法:常见算法包括:朴素贝叶斯算法,平均单依赖估计(AveragedOne-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN);

6) 基于核的算法:常见的算法包括支持向量机(SupportVector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等;

7) 聚类算法:常见的聚类算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM);

8) 基于关联规则学习:常见算法包括 Apriori算法和Eclat算法等;

9) 人工神经网络:重要的人工神经网络算法包括:感知器神经网络(PerceptronNeural Network), 反向传递(Back Propagation), Hopfield网络,自组织映射(Self-OrganizingMap, SOM)。学习矢量量化(Learning Vector Quantization, LVQ);

10) 深度学习:常见的深度学习算法包括:受限波尔兹曼机(RestrictedBoltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders);

11) 降低维度的算法:常见的算法包括主成份分析(PrincipleComponent Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS), Sammon映射,多维尺度(Multi-Dimensional Scaling, MDS), 投影追踪(ProjectionPursuit)等;

12) 集成算法:常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging),AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(GradientBoosting Machine, GBM),随机森林(Random Forest)。

3、掌握一种编程工具,比如Python
一方面Python是脚本语言,简便,拿个记事本就能写,写完拿控制台就能跑;另外,Python非常高效,效率比java、r、matlab高。matlab虽然包也多,但是效率是这四个里面最低的。

4、了解行业最新动态和研究成果,比如各大牛的经典论文、博客、读书笔记、微博微信等媒体资讯。

5、买一个GPU,找一个开源框架,自己多动手训练深度神经网络,多动手写写代码,多做一些与人工智能相关的项目。

6、选择自己感兴趣或者工作相关的一个领域深入下去
人工智能有很多方向,比如NLP、语音识别、计算机视觉等等,生命有限,必须得选一个方向深入的钻研下去,这样才能成为人工智能领域的大牛,有所成就。

根据网络给的定义,人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的还能的理论、方法、技术及应用系统的一门新的技术科学。
网络关于人工智能的定义详解中说道:人工智能是计算机的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
综上,从定义上讲,人工智能是一项技术。

⑦ python的seaborn.kdeplot有什么用

kde(kernel density estimation)是核密度估计。核的作用是根据离散采样,估计连续密度分布。
如果原始采样是《阴阳师》里的式神,那么kernel(核函数)就相当于御魂。

假设现在有一系列离散变量X = [4, 5, 5, 6, 12, 14, 15, 15, 16, 17],可见5和15的概率密度应该要高一些,但具体有多高呢?有没有三四层楼那么高,有没有华莱士高?如果要估计的是没有出现过的3呢?这就要自己判断了。

核函数就是给空间的每个离散点都套上一个连续分布。最简单的核函数是Parzen窗,类似一个方波:

这时候单个离散点就可以变成区间,空间或者高维空间下的超立方,实质上是进行了升维。

设h=4,则3的概率密度为:

(只有4对应的核函数为1,其他皆为0)

kernel是非负实值对称可积函数,表示为K,且一本满足:

这样才能保证cdf仍为1。

实际上应用最多的是高斯核函数(Gaussian Kernel),也就是标准正态分布。所谓核密度估计就是把所有离散点的核函数加起来,得到整体的概率密度分布。核密度估计在很多机器学习算法中都有应用,比如K近邻、K平均等。

在支持向量机里,也有“核”的概念,同样也是给数据升维,最常用的还是高斯核函数,也叫径向基函数(Radial Basis Funtion)。
seaborn.kdeplot内置了多种kerne,总有一款适合你。

阅读全文

与Python做径向图相关的资料

热点内容
控制面板命令行 浏览:49
为什么空气难压缩是因为斥力吗 浏览:641
郭天祥单片机实验板 浏览:599
服务器有什么危害 浏览:256
饥荒怎么开新的独立服务器 浏览:753
文件夹变成了 浏览:560
linuxpython绿色版 浏览:431
怎么下载小爱同学音箱app 浏览:554
python占位符作用 浏览:76
javajdbcpdf 浏览:543
php网页模板下载 浏览:192
python试讲课pygame 浏览:409
安居客的文件夹名称 浏览:677
家里服务器如何玩 浏览:451
网站源码使用视频 浏览:748
stc89c52单片机最小系统 浏览:452
邮件安全证书加密 浏览:416
云服务器如何访问百度 浏览:279
常州电信服务器dns地址 浏览:839
用小方块制作解压方块 浏览:42