导航:首页 > 编程语言 > python最小堆

python最小堆

发布时间:2022-07-27 23:46:16

A. pylint可以检查python的圈复杂度吗

比方找出前k个最大的数,建立一个最小堆,size为k, 先放前k个数到堆中。然后遍历余下的数(设为x),如果x比堆顶的数大,则弹出堆顶,压入x, 否则忽略。遍历完后就找出了最大的k个数。

B. python中的堆栈什么意思

堆栈是一种执行“后进先出”算法的数据结构。

设想有一个直径不大、一端开口一端封闭的竹筒。有若干个写有编号的小球,小球的直径比竹筒的直径略小。现在把不同编号的小球放到
竹筒里面,可以发现一种规律:先放进去的小球只能后拿出来,反之,后放进去的小球能够先拿出来。所以“先进后出”就是这种结构的
特点。
堆栈是计算机中最常用的一种数据结构,比如函数的调用在计算机中是用堆栈实现的。 堆栈可以用数组存储,也可以用以后会介绍的链
表存储。
堆栈就是这样一种数据结构。它是在内存中开辟一个存储区域,数据一个一个顺序地存入(也就是“压入——push”)这个区域之中。

有一个地址指针总指向最后一个压入堆栈的数据所在的数据单元,存放这个地址指针的寄存器就叫做堆栈指示器。开始放入数据的单元叫
做“栈底”。数据一个一个地存入,这个过程叫做“压栈”。在压栈的过程中,每有一个数据压入堆栈,就放在和前一个单元相连的后面
一个单元中,堆栈指示器中的地址自动加1。读取这些数据时,按照堆栈指示器中的地址读取数据,堆栈指示器中的地址数自动减 1。这
个过程叫做“弹出pop”。如此就实现了后进先出的原则。
推荐学习《python教程》。

C. python几种经典排序方法的实现

class SortMethod:
'''
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。
插入算法把要排序的数组分成两部分:
第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置)
第二部分就只包含这一个元素(即待插入元素)。
在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
'''
def insert_sort(lists):
# 插入排序
count = len(lists)
for i in range(1, count):
key = lists[i]
j = i - 1
while j >= 0:
if lists[j] > key:
lists[j + 1] = lists[j]
lists[j] = key
j -= 1
return lists
'''
希尔排序 (Shell Sort) 是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因 DL.Shell 于 1959 年提出而得名。
希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至 1 时,整个文件恰被分成一组,算法便终止。
'''
def shell_sort(lists):
# 希尔排序
count = len(lists)
step = 2
group = count / step
while group > 0:
for i in range(0, group):
j = i + group
while j < count:
k = j - group
key = lists[j]
while k >= 0:
if lists[k] > key:
lists[k + group] = lists[k]
lists[k] = key
k -= group
j += group
group /= step
return lists
'''
冒泡排序重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
'''
def bubble_sort(lists):
# 冒泡排序
count = len(lists)
for i in range(0, count):
for j in range(i + 1, count):
if lists[i] > lists[j]:
temp = lists[j]
lists[j] = lists[i]
lists[i] = temp
return lists
'''
快速排序
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列
'''
def quick_sort(lists, left, right):
# 快速排序
if left >= right:
return lists
key = lists[left]
low = left
high = right
while left < right:
while left < right and lists[right] >= key:
right -= 1
lists[left] = lists[right]
while left < right and lists[left] <= key:
left += 1
lists[right] = lists[left]
lists[right] = key
quick_sort(lists, low, left - 1)
quick_sort(lists, left + 1, high)
return lists
'''
直接选择排序
第 1 趟,在待排序记录 r[1] ~ r[n] 中选出最小的记录,将它与 r[1] 交换;
第 2 趟,在待排序记录 r[2] ~ r[n] 中选出最小的记录,将它与 r[2] 交换;
以此类推,第 i 趟在待排序记录 r[i] ~ r[n] 中选出最小的记录,将它与 r[i] 交换,使有序序列不断增长直到全部排序完毕。
'''
def select_sort(lists):
# 选择排序
count = len(lists)
for i in range(0, count):
min = i
for j in range(i + 1, count):
if lists[min] > lists[j]:
min = j
temp = lists[min]
lists[min] = lists[i]
lists[i] = temp
return lists
'''
堆排序 (Heapsort) 是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。
可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即 A[PARENT[i]] >= A[i]。
在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
'''
# 调整堆
def adjust_heap(lists, i, size):
lchild = 2 * i + 1
rchild = 2 * i + 2
max = i
if i < size / 2:
if lchild < size and lists[lchild] > lists[max]:
max = lchild
if rchild < size and lists[rchild] > lists[max]:
max = rchild
if max != i:
lists[max], lists[i] = lists[i], lists[max]
adjust_heap(lists, max, size)
# 创建堆
def build_heap(lists, size):
for i in range(0, (size/2))[::-1]:
adjust_heap(lists, i, size)
# 堆排序
def heap_sort(lists):
size = len(lists)
build_heap(lists, size)
for i in range(0, size)[::-1]:
lists[0], lists[i] = lists[i], lists[0]
adjust_heap(lists, 0, i)
'''
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法 (Divide and Conquer) 的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并过程为:
比较 a[i] 和 a[j] 的大小,若 a[i]≤a[j],则将第一个有序表中的元素 a[i] 复制到 r[k] 中,并令 i 和 k 分别加上 1;
否则将第二个有序表中的元素 a[j] 复制到 r[k] 中,并令 j 和 k 分别加上 1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到 r 中从下标 k 到下标 t 的单元。归并排序的算法我们通常用递归实现,先把待排序区间 [s,t] 以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间 [s,t]。
'''
def merge(left, right):
i, j = 0, 0
result = []
while i < len(left) and j < len(right):
if left[i] <= right[j]:
result.append(left[i])
i += 1
else:
result.append(right[j])
j += 1
result += left[i:]
result += right[j:]
return result
def merge_sort(lists):
# 归并排序
if len(lists) <= 1:
return lists
num = len(lists) / 2
left = merge_sort(lists[:num])
right = merge_sort(lists[num:])
return merge(left, right)
'''
基数排序 (radix sort) 属于“分配式排序” (distribution sort),又称“桶子法” (bucket sort) 或 bin sort,顾名思义,它是透过键值的部份资讯,将要排序的元素分配至某些“桶”中,借以达到排序的作用,基数排序法是属于稳定性的排序。
其时间复杂度为 O (nlog(r)m),其中 r 为所采取的基数,而 m 为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。
'''
import math
def radix_sort(lists, radix=10):
k = int(math.ceil(math.log(max(lists), radix)))
bucket = [[] for i in range(radix)]
for i in range(1, k+1):
for j in lists:
bucket[j/(radix**(i-1)) % (radix**i)].append(j)
del lists[:]
for z in bucket:
lists += z
del z[:]
return lists
---------------------
作者:CRazyDOgen
来源:CSDN
原文:https://blog.csdn.net/jipang6225/article/details/79975312
版权声明:本文为博主原创文章,转载请附上博文链接!

D. python中有哪些简单的算法

你好:
跟你详细说一下python的常用8大算法:
1、插入排序
插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)。是稳定的排序方法。插入算法把要排序的数组分成两部分:第一部分包含了这个数组的所有元素,但将最后一个元素除外(让数组多一个空间才有插入的位置),而第二部分就只包含这一个元素(即待插入元素)。在第一部分排序完成后,再将这个最后元素插入到已排好序的第一部分中。
2、希尔排序
希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止。
3、冒泡排序
它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
4、快速排序
通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。
5、直接选择排序
基本思想:第1趟,在待排序记录r1 ~ r[n]中选出最小的记录,将它与r1交换;第2趟,在待排序记录r2 ~ r[n]中选出最小的记录,将它与r2交换;以此类推,第i趟在待排序记录r[i] ~ r[n]中选出最小的记录,将它与r[i]交换,使有序序列不断增长直到全部排序完毕。
6、堆排序
堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。可以利用数组的特点快速定位指定索引的元素。堆分为大根堆和小根堆,是完全二叉树。大根堆的要求是每个节点的值都不大于其父节点的值,即A[PARENT[i]] >= A[i]。在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的要求可知,最大的值一定在堆顶。
7、归并排序
归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。
归并过程为:比较a[i]和a[j]的大小,若a[i]≤a[j],则将第一个有序表中的元素a[i]复制到r[k]中,并令i和k分别加上1;否则将第二个有序表中的元素a[j]复制到r[k]中,并令j和k分别加上1,如此循环下去,直到其中一个有序表取完,然后再将另一个有序表中剩余的元素复制到r中从下标k到下标t的单元。归并排序的算法我们通常用递归实现,先把待排序区间[s,t]以中点二分,接着把左边子区间排序,再把右边子区间排序,最后把左区间和右区间用一次归并操作合并成有序的区间[s,t]。
8、基数排序
基数排序(radix sort)属于“分配式排序”(distribution sort),又称“桶子法”(bucket sort)或bin sort,顾名思义,它是透过键值的部分资讯,将要排序的元素分配至某些“桶”中,借以达到排序的作用,基数排序法是属于稳定性的排序,其时间复杂度为O (nlog(r)m),其中r为所采取的基数,而m为堆数,在某些时候,基数排序法的效率高于其它的稳定性排序法。

E. python heapq是线程安全吗

堆的定义:
堆是一种特殊的数据结构,它的通常的表示是它的根结点的值最大或者是最小。
python中heapq的使用
列出一些常见的用法:
heap = []#建立一个常见的堆
heappush(heap,item)#往堆中插入一条新的值
item = heappop(heap)#弹出最小的值
item = heap[0]#查看堆中最小的值,不弹出
heapify(x)#以线性时间将一个列表转为堆
item = heapreplace(heap,item)#弹出一个最小的值,然后将item插入到堆当中。堆的整体的结构不会发生改变。
heappoppush()#弹出最小的值,并且将新的值插入其中
merge()#将多个堆进行合并
nlargest(n , iterbale, key=None)从堆中找出做大的N个数,key的作用和sorted( )方法里面的key类似,用列表元素的某个属性和函数作为关键字

F. python中的数据结构分析

1.Python数据结构篇

数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introction to Algorithms)
中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例
如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文
章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。

**这一部分是下
面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比
较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。**

(1)[搜索](Python Data Structures)

简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突)

(2)[排序](Python Data Structures)

简述各种排序算法的思想以及它的图示和实现

(3)[数据结构](Python Data Structures)

简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆

(4)[树总结](Python Data Structures)

简述二叉树,详述二叉搜索树和AVL树的思想和实现

2.Python算法设计篇

算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introction to Algorithms),
内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排
序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并
没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但
是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来
了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过!

这里每篇文章都有实现代码,但是代码我一般都不会分
析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算
法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟
们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。

本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原着的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原着英文内容。

**1.
你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这
个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇
文章之后都还有一两道小题练手哟**

**2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂
不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科
普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵**

**3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~**

(1)[Python Algorithms - C1 Introction](Python Algorithms)

本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。

(2)[Python Algorithms - C2 The basics](Python Algorithms)

**本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。**

(3)[Python Algorithms - C3 Counting 101](Python Algorithms)

原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法

(4)[Python Algorithms - C4 Inction and Recursion and Rection](Python Algorithms)

**本节主要介绍算法设计的三个核心知识:Inction(推导)、Recursion(递归)和Rection(规约),这是原书的重点和难点部分**

(5)[Python Algorithms - C5 Traversal](Python Algorithms)

**本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法**

(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)

**本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法**

(7)[Python Algorithms - C7 Greedy](Python Algorithms)

**本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等**

(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)

**本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比**

(9)[Python Algorithms - C9 Graphs](Python Algorithms)

**本节主要介绍图算法中的各种最短路径算法,从不同的角度揭示它们的内核以及它们的异同**

阅读全文

与python最小堆相关的资料

热点内容
电脑感染exe文件夹 浏览:914
wpsppt怎么转pdf格式 浏览:86
腾讯文档在线编辑怎么添加密码 浏览:868
本地不能访问服务器地址 浏览:865
访问服务器命令 浏览:835
华为云服务器分销商 浏览:954
Linux定位内存泄露 浏览:198
工程加密狗视频 浏览:720
不在内网怎么连接服务器 浏览:664
云服务器app安卓下载 浏览:966
如何查看linux服务器的核心数 浏览:137
交易平台小程序源码下载 浏览:148
程序员记笔记用什么app免费的 浏览:646
java与单片机 浏览:897
服务器内网如何通过公网映射 浏览:478
程序员穿越到宋代 浏览:624
怎么使用云服务器挂游戏 浏览:618
真实的幸福pdf 浏览:345
d盘php调用c盘的mysql 浏览:266
怎么样搭建源码网站 浏览:430