导航:首页 > 编程语言 > java01背包问题

java01背包问题

发布时间:2022-08-04 07:10:41

1. 01背包问题

算法分析

对于背包问题,通常的处理方法是搜索。
用递归来完成搜索,算法设计如下:
function Make( i {处理到第i件物品} , j{剩余的空间为j}:integer) :integer;
初始时i=m , j=背包总容量
begin
if i:=0 then
Make:=0;
if j>=wi then (背包剩余空间可以放下物品 i )
r1:=Make(i-1,j-wi)+v; (第i件物品放入所能得到的价值 )
r2:=Make(i-1,j)(第i件物品不放所能得到的价值 )
Make:=max{r1,r2}
end;
这个算法的时间复杂度是O(2^n),我们可以做一些简单的优化。
由于本题中的所有物品的体积均为整数,经过几次的选择后背包的剩余空间可能会相等,在搜索中会重复计算这些结点,所以,如果我们把搜索过程中计算过的结点的值记录下来,以保证不重复计算的话,速度就会提高很多。这是简单?quot;以空间换时间"。
我们发现,由于这些计算过程中会出现重叠的结点,符合动态规划中子问题重叠的性质。
同时,可以看出如果通过第N次选择得到的是一个最优解的话,那么第N-1次选择的结果一定也是一个最优解。这符合动态规划中最优子问题的性质。
考虑用动态规划的方法来解决,这里的:
阶段是:在前N件物品中,选取若干件物品放入背包中;
状态是:在前N件物品中,选取若干件物品放入所剩空间为W的背包中的所能获得的最大价值;
决策是:第N件物品放或者不放;
由此可以写出动态转移方程:
我们用f[i,j]表示在前 i 件物品中选择若干件放在所剩空间为 j 的背包里所能获得的最大价值
f[i,j]=max{f[i-1,j-Wi]+Pi (j>=Wi), f[i-1,j]}
这个方程非常重要,基本上所有跟背包相关的问题的方程都是由它衍生出来的。所以有必要将它详细解释一下:“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c的背包中”,此时能获得的最大价值就是f[v-c]再加上通过放入第i件物品获得的价值w。
这样,我们可以自底向上地得出在前M件物品中取出若干件放进背包能获得的最大价值,也就是f[m,w]
算法设计如下:
procere Make;
begin
for i:=0 to w do
f[0,i]:=0;
for i:=1 to m do
for j:=0 to w do begin
f[i,j]:=f[i-1,j];
if (j>=w) and (f[i-1,j-w]+v>f[i,j]) then
f[i,j]:=f[i-1,j-w]+v;
end;
writeln(f[m,wt]);
end;
由于是用了一个二重循环,这个算法的时间复杂度是O(n*w)。而用搜索的时候,当出现最坏的情况,也就是所有的结点都没有重叠,那么它的时间复杂度是O(2^n)。看上去前者要快很多。但是,可以发现在搜索中计算过的结点在动态规划中也全都要计算,而且这里算得更多(有一些在最后没有派上用场的结点我们也必须计算),在这一点上好像是矛盾的。
事实上,由于我们定下的前提是:所有的结点都没有重叠。也就是说,任意N件物品的重量相加都不能相等,而所有物品的重量又都是整数,那末这个时候W的最小值是:1+2+2^2+2^3+……+2^n-1=2^n -1
此时n*w>2^n,动态规划比搜索还要慢~~|||||||所以,其实背包的总容量W和重叠的结点的个数是有关的。
考虑能不能不计算那些多余的结点……
优化时间复杂度
以上方法的时间和空间复杂度均为O(N*V),其中时间复杂度基本已经不能再优化了,但空间复杂度却可以优化到O(V)。
先考虑上面讲的基本思路如何实现,肯定是有一个主循环i=1..N,每次算出来二维数组f[0..V]的所有值。那么,如果只用一个数组f[0..V],能不能保证第i次循环结束后f[v]中表示的就是我们定义的状态f[v]呢?f[v]是由f[v]和f[v-c]两个子问题递推而来,能否保证在推f[v]时(也即在第i次主循环中推f[v]时)能够得到f[v]和f[v-c]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推f[v],这样才能保证推f[v]时f[v-c]保存的是状态f[v-c]的值。伪代码如下:
for i=1..N
for v=V..0
f[v]=max{f[v],f[v-c]+w};
其中的f[v]=max{f[v],f[v-c]}一句恰就相当于我们的转移方程f[v]=max{f[v],f[v-c]},因为现在的f[v-c]就相当于原来的f[v-c]。如果将v的循环顺序从上面的逆序改成顺序的话,那么则成了f[v]由f[v-c]推知,与本题意不符,但它却是另一个重要的背包问题P02最简捷的解决方案,故学习只用一维数组解01背包问题是十分必要的。
事实上,使用一维数组解01背包的程序在后面会被多次用到,所以这里抽象出一个处理一件01背包中的物品过程,以后的代码中直接调用不加说明。
过程ZeroOnePack,表示处理一件01背包中的物品,两个参数cost、weight分别表明这件物品的费用和价值。
procere ZeroOnePack(cost,weight)
for v=V..cost
f[v]=max{f[v],f[v-cost]+weight}
注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。
有了这个过程以后,01背包问题的伪代码就可以这样写:
for i=1..N
ZeroOnePack(c,w);
初始化的细节问题

我们看到的求最优解的背包问题题目中,事实上有两种不太相同的问法。有的题目要求“恰好装满背包”时的最优解,有的题目则并没有要求必须把背包装满。一种区别这两种问法的实现方法是在初始化的时候有所不同。
如果是第一种问法,要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。
如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。
为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。
这个小技巧完全可以推广到其它类型的背包问题,后面也就不再对进行状态转移之前的初始化进行讲解

2. 回溯法解决0-1背包问题 java写的 求大神指点~~~~(>_<)~~~~

因为你把n和c 定义为static ,而且初始化为0,。数组也为静态的,一个类中静态的变量在这个类加载的时候就会执行,所以当你这类加载的时候,你的数组static int[] v = new int[n];
static int[] w = new int[n];
就已经初始化完毕,而且数组大小为0。在main方法里动态改变n的值是改变不了已经初始化完毕的数组的大小的,因为组已经加载完毕。

我建议你可以在定义n,c是就为其赋初值。比如(static int n=2 static int c=3)

3. 1020: [01背包]01背包问题

rogram olbeibao,i,n,v.999] of integer;
writeln(a[v]):integer,k,w);
for j:=v downto v1 do
if a[j]lt;a[j-v1]+w then a[j]:=a[j-v1]+w;
begin
read(v,c;
var
a:array[0.,m,n);
for i:=1 to n do
begin
read(v1;
v1,m1,w;
end,j;
end

4. 关于01背包问题

实在是佩服,精神可嘉,但我还是建议你把dp学会。不会dp的话实在是寸步难行啊!
dp的复杂度为O(n)
穷举的复杂度为O(2^n)
回溯的时间复杂度介于两者之间,但还是非常大的。对于大规模的数据肯定会爆。好自为之吧!

5. 01背包问题为何不用单位价值去做呢先放入单位价值最大的,然后判断一下剩余空间,再放入

这样不一定是最优的。
比如:背包容量10.
物品的重量:9 2 2 2 2 2
物品的价值:9 1.9 1.9 1.9 1.9 1.9

单位价值最大的是第一个(9,9) 但放了它就放不了其它的了。最终的价值是9

如果放后面的5个重量都是2的,那么最后的价值是1.9 * 5 = 9.5

6. 完全背包和01背包问题求解

这个代码本来就是正确的、标准的,逆推只是为了减少空间而已。

7. 关于这个java语言描述的0-1背包问题是否有错误

有点问题:
public static void knapsack(int[]v,int[]w,int c,int[][]m)
{
int n=v.length-1;
int jMax=Math.min(w[n]-1,c);
for(int j=0;j<=jMax;j++)
m[n][j]=0;
for(int j=w[n];j<=c;j++)
m[n][j]=v[n];
for(int i=n-1;i>1;i--)
{
jMax=Math.min(w[i]-1,c);
for(int j=0;j<=jMax;j++)
m[i][j]=m[i+1][j];
for(int j=w[i];j<=c;j++)
m[i][j]=Math.max(m[i+1][j],m[i+1][j-w[i]]+v[i]);
}
m[1][c]=m[2][c];
if(c>=w[1])
m[1][c]=Math.max(m[1][c],m[2][c-w[1]]+v[1]);
}
public static void traceback(int[][]m,int[]w,int c,int[]x)
{
int n=w.length-1;
for(int i=1;i<n;i++) {
if(m[i][c]==m[i+1][c])x[i]=0;
else {
x[i]=1;
c-=w[i];
}
x[n]=(m[n][c]>0)?1:0;
}

//int n=w.length-1;
for(int i=1;i<n;i++)
if(m[i][c]==m[i+1][c])x[i]=0;
else {
x[i]=1;
c-=w[i];
}
x[n]=(m[n][c]>0)?1:0;
}

8. 0-1背包问题java代码

importjava.io.BufferedInputStream;
importjava.util.Scanner;

publicclasstest{
publicstaticint[]weight=newint[101];
publicstaticint[]value=newint[101];

publicstaticvoidmain(String[]args){
Scannercin=newScanner(newBufferedInputStream(System.in));
intn=cin.nextInt();
intW=cin.nextInt();
for(inti=0;i<n;++i){
weight[i]=cin.nextInt();
value[i]=cin.nextInt();
}
cin.close();
System.out.println(solve(0,W,n));//普通递归
System.out.println("=========");
System.out.println(solve2(weight,value,W));//动态规划表
}

publicstaticintsolve(inti,intW,intn){
intres;
if(i==n){
res=0;
}elseif(W<weight[i]){
res=solve(i+1,W,n);
}else{
res=Math.max(solve(i+1,W,n),solve(i+1,W-weight[i],n)+value[i]);
}
returnres;
}

publicstaticintsolve2(int[]weight,int[]value,intW){
int[][]dp=newint[weight.length+1][W+1];
for(inti=weight.length-1;i>=0;--i){
for(intj=W;j>=0;--j){
dp[i][j]=dp[i+1][j];//从右下往左上,i+1就是刚刚记忆过的背包装到i+1重量时的最大价值
if(j+weight[i]<=W){//dp[i][j]就是背包已经装了j的重量时,能够获得的最大价值
dp[i][j]=Math.max(dp[i][j],value[i]+dp[i+1][j+weight[i]]);
//当背包重量为j时,要么沿用刚刚装的,本次不装,最大价值dp[i][j],要么就把这个重物装了,那么此时背包装的重量为j+weight[i],
//用本次的价值value[i]加上背包已经装了j+weight[i]时还能获得的最大价值,因为是从底下往上,刚刚上一步算过,可以直接用dp[i+1][j+weight[i]]。
//然后选取本次不装weight[i]重物时获得的最大价值以及本次装weight[i]重物获得的最大价值两者之间的最大值
}
}
}
returndp[0][0];
}
}

9. 求解释01背包问题

这个是状态转移方程
f[v] 表示背包剩余容量V时候积累的价值总和
你这个是优化版本的只用了一维数组 有个更基本的方法我解释给你听

有n件物品 假设当前到第i件了

{ f[i - 1][v];
f[i][v](到第i件时 此时容量为v ) = {
{ f[i - 1][v - w[i]] + p[i];(v>=w[i])
(两者中较大的那个)

“将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-c[i]]再加上通过放入第i件物品获得的价值w[i]。

10. 01背包问题变种:从给定的N个正数中选取若干个数之和最接近M的JAVA写法

BIAS0:= (C-MA(C,2))/MA(C,2)*100;
BIAS1 := (C-MA(C,12))/MA(C,12)*100;
BIAS2 := (C-MA(C,26))/MA(C,26)*100;
BIAS3 := (C-MA(C,48))/MA(C,48)*100;
HXL:=V/CAPITAL*100;
D1:=INDEXC;
D2:=MA(D1,56);
DR2:=D1/D2<0.94;
E1:=(C-HHV(C,12))/HHV(C,12)*10;
E2:=(C-REF(C,26))/REF(C,26)*10;

阅读全文

与java01背包问题相关的资料

热点内容
闽政通无法请求服务器是什么 浏览:48
怎么做积木解压神器 浏览:203
王者荣耀解压玩具抽奖 浏览:49
12位是由啥加密的 浏览:868
程序员编迷你世界代码 浏览:895
php取现在时间 浏览:246
单片机高吸收 浏览:427
怎么区分五代头是不是加密喷头 浏览:244
hunt测试服务器是什么意思 浏览:510
2013程序员考试 浏览:641
毕业论文是pdf 浏览:736
服务器跑网心云划算吗 浏览:471
单片机定时器计数初值的计算公式 浏览:801
win7控制台命令 浏览:567
猫咪成年app怎么升级 浏览:692
360有没有加密软件 浏览:315
清除cisco交换机配置命令 浏览:751
华为删除交换机配置命令 浏览:473
shell打包命令 浏览:827
加密狗插上输不了密码 浏览:187