‘壹’ python爬虫可以做什么
1、收集数据
Python爬虫程序可用于收集数据,这是最直接和最常用的方法。由于爬虫程序是一个程序,程序运行得非常快,不会因为重复的事情而感到疲倦,因此使用爬虫程序获取大量数据变得非常简单、快速。
2、数据储存
Python爬虫可以将从各个网站收集的数据存入原始页面数据库。其中的页面数据与用户浏览器得到的HTML是完全一样的。注意:搜索引擎蜘蛛在抓取页面时,也做一定的重复内容检测,一旦遇到访问权限很低的网站上有大量抄袭、采集或者复制的内容,很可能就不再爬行。
3、网页预处理
Python爬虫可以将爬虫抓取回来的页面,进行各种步骤的预处理。比如提取文字、中文分词、消除噪音、索引处理、特殊文字处理等。
4、提供检索服务、网站排名
Python爬虫在对信息进行组织和处理之后,为用户提供关键字检索服务,将用户检索相关的信息展示给用户。同时可以根据页面的PageRank
值来进行网站排名,这样Rank值高的网站在搜索结果中会排名较前,当然也可以直接使用Money购买搜索引擎网站排名。
5、科学研究
在线人类行为、在线社群演化、人类动力学研究、计量社会学、复杂网络、数据挖掘等领域的实证研究都需要大量数据,Python爬虫是收集相关数据的利器。
‘贰’ 如何用python写出爬虫
先检查是否有API
API是网站官方提供的数据接口,如果通过调用API采集数据,则相当于在网站允许的范围内采集,这样既不会有道德法律风险,也没有网站故意设置的障碍;不过调用API接口的访问则处于网站的控制中,网站可以用来收费,可以用来限制访问上限等。整体来看,如果数据采集的需求并不是很独特,那么有API则应优先采用调用API的方式。
数据结构分析和数据存储
爬虫需求要十分清晰,具体表现为需要哪些字段,这些字段可以是网页上现有的,也可以是根据网页上现有的字段进一步计算的,这些字段如何构建表,多张表如何连接等。值得一提的是,确定字段环节,不要只看少量的网页,因为单个网页可以缺少别的同类网页的字段,这既有可能是由于网站的问题,也可能是用户行为的差异,只有多观察一些网页才能综合抽象出具有普适性的关键字段——这并不是几分钟看几个网页就可以决定的简单事情,如果遇上了那种臃肿、混乱的网站,可能坑非常多。
对于大规模爬虫,除了本身要采集的数据外,其他重要的中间数据(比如页面Id或者url)也建议存储下来,这样可以不必每次重新爬取id。
数据库并没有固定的选择,本质仍是将Python里的数据写到库里,可以选择关系型数据库MySQL等,也可以选择非关系型数据库MongoDB等;对于普通的结构化数据一般存在关系型数据库即可。sqlalchemy是一个成熟好用的数据库连接框架,其引擎可与Pandas配套使用,把数据处理和数据存储连接起来,一气呵成。
数据流分析
对于要批量爬取的网页,往上一层,看它的入口在哪里;这个是根据采集范围来确定入口,比如若只想爬一个地区的数据,那从该地区的主页切入即可;但若想爬全国数据,则应更往上一层,从全国的入口切入。一般的网站网页都以树状结构为主,找到切入点作为根节点一层层往里进入即可。
值得注意的一点是,一般网站都不会直接把全量的数据做成列表给你一页页往下翻直到遍历完数据,比如链家上面很清楚地写着有24587套二手房,但是它只给100页,每页30个,如果直接这么切入只能访问3000个,远远低于真实数据量;因此先切片,再整合的数据思维可以获得更大的数据量。显然100页是系统设定,只要超过300个就只显示100页,因此可以通过其他的筛选条件不断细分,只到筛选结果小于等于300页就表示该条件下没有缺漏;最后把各种条件下的筛选结果集合在一起,就能够尽可能地还原真实数据量。
明确了大规模爬虫的数据流动机制,下一步就是针对单个网页进行解析,然后把这个模式复制到整体。对于单个网页,采用抓包工具可以查看它的请求方式,是get还是post,有没有提交表单,欲采集的数据是写入源代码里还是通过AJAX调用JSON数据。
同样的道理,不能只看一个页面,要观察多个页面,因为批量爬虫要弄清这些大量页面url以及参数的规律,以便可以自动构造;有的网站的url以及关键参数是加密的,这样就悲剧了,不能靠着明显的逻辑直接构造,这种情况下要批量爬虫,要么找到它加密的js代码,在爬虫代码上加入从明文到密码的加密过程;要么采用下文所述的模拟浏览器的方式。
数据采集
之前用R做爬虫,不要笑,R的确可以做爬虫工作;但在爬虫方面,Python显然优势更明显,受众更广,这得益于其成熟的爬虫框架,以及其他的在计算机系统上更好的性能。scrapy是一个成熟的爬虫框架,直接往里套用就好,比较适合新手学习;requests是一个比原生的urllib包更简洁强大的包,适合作定制化的爬虫功能。requests主要提供一个基本访问功能,把网页的源代码给download下来。一般而言,只要加上跟浏览器同样的Requests Headers参数,就可以正常访问,status_code为200,并成功得到网页源代码;但是也有某些反爬虫较为严格的网站,这么直接访问会被禁止;或者说status为200也不会返回正常的网页源码,而是要求写验证码的js脚本等。
下载到了源码之后,如果数据就在源码中,这种情况是最简单的,这就表示已经成功获取到了数据,剩下的无非就是数据提取、清洗、入库。但若网页上有,然而源代码里没有的,就表示数据写在其他地方,一般而言是通过AJAX异步加载JSON数据,从XHR中找即可找到;如果这样还找不到,那就需要去解析js脚本了。
解析工具
源码下载后,就是解析数据了,常用的有两种方法,一种是用BeautifulSoup对树状HTML进行解析,另一种是通过正则表达式从文本中抽取数据。
BeautifulSoup比较简单,支持Xpath和CSSSelector两种途径,而且像Chrome这类浏览器一般都已经把各个结点的Xpath或者CSSSelector标记好了,直接复制即可。以CSSSelector为例,可以选择tag、id、class等多种方式进行定位选择,如果有id建议选id,因为根据HTML语法,一个id只能绑定一个标签。
正则表达式很强大,但构造起来有点复杂,需要专门去学习。因为下载下来的源码格式就是字符串,所以正则表达式可以大显身手,而且处理速度很快。
对于HTML结构固定,即同样的字段处tag、id和class名称都相同,采用BeautifulSoup解析是一种简单高效的方案,但有的网站混乱,同样的数据在不同页面间HTML结构不同,这种情况下BeautifulSoup就不太好使;如果数据本身格式固定,则用正则表达式更方便。比如以下的例子,这两个都是深圳地区某个地方的经度,但一个页面的class是long,一个页面的class是longitude,根据class来选择就没办法同时满足2个,但只要注意到深圳地区的经度都是介于113到114之间的浮点数,就可以通过正则表达式"11[3-4].\d+"来使两个都满足。
数据整理
一般而言,爬下来的原始数据都不是清洁的,所以在入库前要先整理;由于大部分都是字符串,所以主要也就是字符串的处理方式了。
字符串自带的方法可以满足大部分简单的处理需求,比如strip可以去掉首尾不需要的字符或者换行符等,replace可以将指定部分替换成需要的部分,split可以在指定部分分割然后截取一部分。
如果字符串处理的需求太复杂以致常规的字符串处理方法不好解决,那就要请出正则表达式这个大杀器。
Pandas是Python中常用的数据处理模块,虽然作为一个从R转过来的人一直觉得这个模仿R的包实在是太难用了。Pandas不仅可以进行向量化处理、筛选、分组、计算,还能够整合成DataFrame,将采集的数据整合成一张表,呈现最终的存储效果。
写入数据库
如果只是中小规模的爬虫,可以把最后的爬虫结果汇合成一张表,最后导出成一张表格以便后续使用;但对于表数量多、单张表容量大的大规模爬虫,再导出成一堆零散的表就不合适了,肯定还是要放在数据库中,既方便存储,也方便进一步整理。
写入数据库有两种方法,一种是通过Pandas的DataFrame自带的to_sql方法,好处是自动建表,对于对表结构没有严格要求的情况下可以采用这种方式,不过值得一提的是,如果是多行的DataFrame可以直接插入不加索引,但若只有一行就要加索引否则报错,虽然这个认为不太合理;另一种是利用数据库引擎来执行SQL语句,这种情况下要先自己建表,虽然多了一步,但是表结构完全是自己控制之下。Pandas与SQL都可以用来建表、整理数据,结合起来使用效率更高。
‘叁’ 如何用Python做爬虫
1)首先你要明白爬虫怎样工作。
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?
很简单
import Queue
initial_page = "初始化页"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example
注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...
那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)
考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www.renmingribao.com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)
有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...
及时更新(预测这个网页多久会更新一次)
如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
“路漫漫其修远兮,吾将上下而求索”。
所以,不要问怎么入门,直接上路就好了:)
‘肆’ 如何入门 Python 爬虫
Python入门程度的基础很简单:
1、简单的python语法,不需要什么很深的东西
2、请求库用法(requests、aiohttp等)
3、简单的抓包/抠URL
4、xpath、正则表达式的使用,且能在不用生成工具的情况下自己写出语句提取数据
以上四点已经足够让你爬一些简单的网站了,但仅仅是这个程度而已的话,就还没那些傻瓜式爬虫工具强呢。你还需要JavaScript/Android/iOS逆向知识(核心,杂七杂八的那些这里不一一列举,太多了),用于破加密请求参数、反爬等各种阻止你获取到数据的东西。
‘伍’ 零基础小白如何在最短的时间快速入门python爬虫
Python爬虫为什么受欢迎?Python爬虫应该怎么学?
如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。
利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:
知乎:爬取优质答案,为你筛选出各话题下最优质的内容。
淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。
安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。
拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。
雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。
爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。
掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。
对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……
但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。
在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。
1.学习 Python 包并实现基本的爬虫过程
2.了解非结构化数据的存储
3.学习scrapy,搭建工程化爬虫
4.学习数据库知识,应对大规模数据存储与提取
5.掌握各种技巧,应对特殊网站的反爬措施
6.分布式爬虫,实现大规模并发采集,提升效率
一
学习 Python 包并实现基本的爬虫过程
大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。
Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。
如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事网络、腾讯新闻等基本上都可以上手了。
当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。
二
了解非结构化数据的存储
爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。
开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。
当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。
三
学习 scrapy,搭建工程化的爬虫
掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。
scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。
学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。
四
学习数据库基础,应对大规模数据存储
爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。
MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。
五
掌握各种技巧,应对特殊网站的反爬措施
当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。
遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。
往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了.
六
分布式爬虫,实现大规模并发采集
爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。
分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。
Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。
所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。
你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。
因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。
当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。
希望我的回答对你有帮助,希望采纳。
‘陆’ 如何用Python编写一个简单的爬虫
以下代码运行通过:
importre
importrequests
defShowCity():
html=requests.get("http://www.tianqihoubao.com/weather/province.aspx?id=110000")
citys=re.findall('<tdstyle="height:22px"align="center"><ahref="http://blog.163.com/lucia_gagaga/blog/(.*?)">',html.text,re.S)
forcityincitys:
print(city)
ShowCity()
运行效果:
‘柒’ Python有哪些常见的,好用的爬虫框架
目前实现爬虫技术的编程环境有很多种,Java、Python、C++等都可以用来写爬虫。但很多人选择Python来写爬虫,原因是Python确实很适合做爬虫,丰富的第三方库十分强大,简单几行代码便可实现你想要的功能。更重要的,Python也是数据挖掘和分析的好能手。那么,今天IPIDEA就带大家来了解Python爬虫一般用什么框架比较好。
Beautiful Soup:整合了一些常用爬虫需求。它是一个可以从HTML或XML文件中提取数据的Python库。它能够通过你喜欢的转换器实现惯用的文档导航,查找,修改文档的式.Beautiful Soup会帮你节省数小时甚至数天的工作时间。Beautiful Soup的缺点是不能加载JS。
selenium:这是一个调用浏览器的driver,通过这个库你可以直接调用浏览器完成某些操作,比如输入验证码。Selenium是自动化测试工具,它支持各种浏览器,包括 Chrome,Safari,Firefox等主流界面式浏览器,如果在这些浏览器里面安装一个 Selenium 的插件,可以方便地实现Web界面的测试. Selenium支持浏览器驱动。Selenium支持多种语言开发,比如 Java,C,Ruby等等,PhantomJS 用来渲染解析JS,Selenium 用来驱动以及与Python的对接,Python进行后期的处理。
Scrapy:Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。它是很强大的爬虫框架,可以满足简单的页面爬取,比如可以明确获知url pattern的情况。用这个框架可以轻松爬下来如亚马逊商品信息之类的数据。但是对于稍微复杂一点的页面,如weibo的页面信息,这个框架就满足不了需求了。它的特性有:HTML, XML源数据 选择及提取 的内置支持;提供了一系列在spider之间共享的可复用的过滤器(即 Item Loaders),对智能处理爬取数据提供了内置支持。
Portia:是一个开源可视化爬虫工具,可让使用者在不需要任何编程知识的情况下爬取网站!简单地注释自己感兴趣的页面,Portia将创建一个蜘蛛来从类似的页面提取数据。简单来讲,它是基于scrapy内核;可视化爬取内容,不需要任何开发专业知识;动态匹配相同模板的内容。
cola:是一个分布式的爬虫框架,对于用户来说,只需编写几个特定的函数,而无需关注分布式运行的细节。任务会自动分配到多台机器上,整个过程对用户是透明的。项目整体设计有点糟,模块间耦合度较高。
PySpider:一个国人编写的强大的网络爬虫系统并带有强大的WebUI。采用Python语言编写,分布式架构,支持多种数据库后端,强大的WebUI支持脚本编辑器,任务监视器,项目管理器以及结果查看器。Python脚本控制,可以用任何你喜欢的html解析包。
‘捌’ Python 最简单爬虫爬取数据(一):如何请求
import requests
url=‘http://www..com’
r = requests.get(url,timeout=10)
r.raise_for_status()
r.encoding = r.apparent_encoding
print( r.text)
‘玖’ 如何入门 python 爬虫
如何入门 python 爬虫
先自己答一个,期待牛人的回答。
自己学Python不久,列举自己做过的和知道的。
1. Python做爬虫很方便,有现成的库。 我在学习python的过程中也遇到过一个非常简单的例子,代码:python/primer/20/Cralwer.py at master · xxg1413/python · GitHub 。好像有开源的项目叫什么supercrawler,具体可以看看。
2.Python做游戏。Pygame还是不错的,但只适合做小游戏。用Pygame写个植物大战僵尸还是可以的。推荐教程 用Python和Pygame写游戏。Python在游戏服务器方面也有应用。EVE这种游戏都大量用Python。
3.Python作为黑客第一语言,在黑客领域的应用就不多说了。
4.Python做网站,有几个web框架 WebFrameworks。 用得最多的是Django。
5......各方面都有,什么推荐系统,都是用python,在此就不一一列举了。
‘拾’ 如何用最简单的Python爬虫采集整个网站
在之前的文章中Python实现“维基网络六度分隔理论“之基础爬虫,我们实现了在一个网站上随机地从一个链接到另一个链接,但是,如果我们需要系统地把整个网站按目录分类,或者要搜索网站上的每一个页面,我们该怎么办?我们需要采集整个网站,但是那是一种非常耗费内存资源的过程,尤其是处理大型网站时,比较合适的工具就是用一个数据库来存储采集的资源,之前也说过。下面来说一下怎么做。
网站地图sitemap
网站地图,又称站点地图,它就是一个页面,上面放置了网站上需要搜索引擎抓取的所有页面的链接(注:不是所有页面,一般来说是所有文章链接。大多数人在网站上找不到自己所需要的信息时,可能会将网站地图作为一种补救措施。搜索引擎蜘蛛非常喜欢网站地图。
对于SEO,网站地图的好处:
1.为搜索引擎蜘蛛提供可以浏览整个网站的链接简单的体现出网站的整体框架出来给搜索引擎看;
2.为搜索引擎蜘蛛提供一些链接,指向动态页面或者采用其他方法比较难以到达的页面;
3.作为一种潜在的着陆页面,可以为搜索流量进行优化;
4.如果访问者试图访问网站所在域内并不存在的URL,那么这个访问者就会被转到“无法找到文件”的错误页面,而网站地图可以作为该页面的“准”内容。
数据采集
采集网站数据并不难,但是需要爬虫有足够的深度。我们创建一个爬虫,递归地遍历每个网站,只收集那些网站页面上的数据。一般的比较费时间的网站采集方法从顶级页面开始(一般是网站主页),然后搜索页面上的所有链接,形成列表,再去采集到的这些链接页面,继续采集每个页面的链接形成新的列表,重复执行。
很明显,这是一个复杂度增长很快的过程。加入每个页面有10个链接,网站上有5个页面深度,如果采集整个网站,一共得采集的网页数量是105,即100000个页面。
因为网站的内链有很多都是重复的,所以为了避免重复采集,必须链接去重,在Python中,去重最常用的方法就是使用自带的set集合方法。只有“新”链接才会被采集。看一下代码实例:
from urllib.request import urlopenfrom bs4 import BeautifulSoupimport repages = set()def getLinks(pageurl):globalpageshtml= urlopen("" + pageurl)soup= BeautifulSoup(html)forlink in soup.findAll("a", href=re.compile("^(/wiki/)")):if'href' in link.attrs:iflink.attrs['href'] not in pages:#这是新页面newPage= link.attrs['href']print(newPage)pages.add(newPage)getLinks(newPage)getLinks("")
原理说明:程序执行时,用函数处理一个空URL,其实就是维基网络的主页,然后遍历首页上每个链接,并检查是否已经在全局变量集合pages里面,如果不在,就打印并添加到pages集合,然后递归处理这个链接。
递归警告:Python默认的递归限制是1000次,因为维基网络的链接浩如烟海,所以这个程序达到递归限制后就会停止。如果你不想让它停止,你可以设置一个递归计数器或者其他方法。
采集整个网站数据
为了有效使用爬虫,在用爬虫的时候我们需要在页面上做一些事情。我们来创建一个爬虫来收集页面标题、正文的第一个段落,以及编辑页面的链接(如果有的话)这些信息。
第一步,我们需要先观察网站上的页面,然后制定采集模式,通过F12(一般情况下)审查元素,即可看到页面组成。
观察维基网络页面,包括词条和非词条页面,比如隐私策略之类的页面,可以得出下面的规则:
所有的标题都是在h1→span标签里,而且页面上只有一个h1标签。
所有的正文文字都在div#bodyContent标签里,如果我们想获取第一段文字,可以用div#mw-content-text→p,除了文件页面,这个规则对所有页面都适用。
编辑链接只出现在词条页面上,如果有编辑链接,都位于li#ca-edit标签的li#ca-edit→span→a里面。
调整一下之前的代码,我们可以建立一个爬虫和数据采集的组合程序,代码如下:
import redef getLinks(pageUrl):global pageshtml = urlopen("" + pageUrl)soup = BeautifulSoup(html)try:print(soup.h1.get_text())print(soup.find(id="mw-content-text").findAll("p")[0])print(soup.find(id="ca-edit").find("span").find("a").attrs['href'])except AttributeError:print("页面缺少属性")for link in soup.findAll("a", href =re.compile("^(/wiki/)")):if 'href' in link.attrs:#这是新页面newPage = link.attrs['href']print("------------------\n"+newPage)
这个for循环和原来的采集程序基本上是一样的,因为不能确定每一页上都有所有类型的数据,所以每个打印语句都是按照数据在页面上出现的可能性从高到低排列的。
数据存储到MySQL
前面已经获取了数据,直接打印出来,查看比较麻烦,所以我们就直接存到MySQL里面吧,这里只存链接没有意义,所以我们就存储页面的标题和内容。前面我有两篇文章已经介绍过如何存储数据到MySQL,数据表是pages,这里直接给出代码:
import reimport datetimeimport randomimport pymysqlconn = pymysql.connect(host = '127.0.0.1',port = 3306, user = 'root', passwd = '19930319', db = 'wiki', charset ='utf8mb4')cur = conn.cursor()cur.execute("USE wiki")#随机数种子random.seed(datetime.datetime.now())#数据存储def store(title, content):cur.execute("INSERT INTO pages(title, content)VALUES(\"%s\", \"%s\")", (title, content))cur.connection.commit()def getLinks(articleUrl):html = urlopen("" + articleUrl)title = soup.find("h1").get_text()content =soup.find("div",{"id":"mw-content-text"}).find("p").get_text()store(title, content)returnsoup.find("div",{"id":"bodyContent"}).findAll("a",href=re.compile("^(/wiki/)((?!:).)*$"))#设置第一页links =getLinks("/wiki/Kevin_Bacon")try:while len(links)>0:newArticle = links[random.randint(0, len(links)-1)].attrs['href']print (newArticle)links = getLinks(newArticle)finally:cur.close()conn.close()
小结
今天主要讲一下Python中遍历采集一个网站的链接,方便下面的学习。
希望通过上面的操作能帮助大家。如果你有什么好的意见,建议,或者有不同的看法,我都希望你留言和我们进行交流、讨论。