导航:首页 > 编程语言 > sparkkmeanspython

sparkkmeanspython

发布时间:2022-08-07 04:41:43

① kmeans算法python怎么实现

1、从Kmeans说起
Kmeans是一个非常基础的聚类算法,使用了迭代的思想,关于其原理这里不说了。下面说一下如何在matlab中使用kmeans算法。
创建7个二维的数据点:

复制代码代码如下:
x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]];

使用kmeans函数:

复制代码代码如下:
class = kmeans(x, 2);

x是数据点,x的每一行代表一个数据;2指定要有2个中心点,也就是聚类结果要有2个簇。 class将是一个具有70个元素的列向量,这些元素依次对应70个数据点,元素值代表着其对应的数据点所处的分类号。某次运行后,class的值是:

复制代码代码如下:

2
2
2
1
1
1
1

这说明x的前三个数据点属于簇2,而后四个数据点属于簇1。 kmeans函数也可以像下面这样使用:

复制代码代码如下:

>> [class, C, sumd, D] = kmeans(x, 2)

class =
2
2
2
1
1
1
1
C =
4.0629 4.0845
-0.1341 0.1201
sumd =
1.2017
0.2939
D =
34.3727 0.0184
29.5644 0.1858
36.3511 0.0898
0.1247 37.4801
0.7537 24.0659
0.1979 36.7666
0.1256 36.2149

class依旧代表着每个数据点的分类;C包含最终的中心点,一行代表一个中心点;sumd代表着每个中心点与所属簇内各个数据点的距离之和;D的每一行也对应一个数据点,行中的数值依次是该数据点与各个中心点之间的距离,Kmeans默认使用的距离是欧几里得距离(参考资料[3])的平方值。kmeans函数使用的距离,也可以是曼哈顿距离(L1-距离),以及其他类型的距离,可以通过添加参数指定。
kmeans有几个缺点(这在很多资料上都有说明):
1、最终簇的类别数目(即中心点或者说种子点的数目)k并不一定能事先知道,所以如何选一个合适的k的值是一个问题。
2、最开始的种子点的选择的好坏会影响到聚类结果。
3、对噪声和离群点敏感。
4、等等。
2、kmeans++算法的基本思路
kmeans++算法的主要工作体现在种子点的选择上,基本原则是使得各个种子点之间的距离尽可能的大,但是又得排除噪声的影响。 以下为基本思路:
1、从输入的数据点集合(要求有k个聚类)中随机选择一个点作为第一个聚类中心
2、对于数据集中的每一个点x,计算它与最近聚类中心(指已选择的聚类中心)的距离D(x)
3、选择一个新的数据点作为新的聚类中心,选择的原则是:D(x)较大的点,被选取作为聚类中心的概率较大
4、重复2和3直到k个聚类中心被选出来
5、利用这k个初始的聚类中心来运行标准的k-means算法
假定数据点集合X有n个数据点,依次用X(1)、X(2)、……、X(n)表示,那么,在第2步中依次计算每个数据点与最近的种子点(聚类中心)的距离,依次得到D(1)、D(2)、……、D(n)构成的集合D。在D中,为了避免噪声,不能直接选取值最大的元素,应该选择值较大的元素,然后将其对应的数据点作为种子点。
如何选择值较大的元素呢,下面是一种思路(暂未找到最初的来源,在资料[2]等地方均有提及,笔者换了一种让自己更好理解的说法): 把集合D中的每个元素D(x)想象为一根线L(x),线的长度就是元素的值。将这些线依次按照L(1)、L(2)、……、L(n)的顺序连接起来,组成长线L。L(1)、L(2)、……、L(n)称为L的子线。根据概率的相关知识,如果我们在L上随机选择一个点,那么这个点所在的子线很有可能是比较长的子线,而这个子线对应的数据点就可以作为种子点。下文中kmeans++的两种实现均是这个原理。
3、python版本的kmeans++
在http://rosettacode.org/wiki/K-means%2B%2B_clustering 中能找到多种编程语言版本的Kmeans++实现。下面的内容是基于python的实现(中文注释是笔者添加的):

复制代码代码如下:

from math import pi, sin, cos
from collections import namedtuple
from random import random, choice
from import

try:
import psyco
psyco.full()
except ImportError:
pass
FLOAT_MAX = 1e100
class Point:
__slots__ = ["x", "y", "group"]
def __init__(self, x=0.0, y=0.0, group=0):
self.x, self.y, self.group = x, y, group
def generate_points(npoints, radius):
points = [Point() for _ in xrange(npoints)]
# note: this is not a uniform 2-d distribution
for p in points:
r = random() * radius
ang = random() * 2 * pi
p.x = r * cos(ang)
p.y = r * sin(ang)
return points
def nearest_cluster_center(point, cluster_centers):
"""Distance and index of the closest cluster center"""
def sqr_distance_2D(a, b):
return (a.x - b.x) ** 2 + (a.y - b.y) ** 2
min_index = point.group
min_dist = FLOAT_MAX
for i, cc in enumerate(cluster_centers):
d = sqr_distance_2D(cc, point)
if min_dist > d:
min_dist = d
min_index = i
return (min_index, min_dist)
'''
points是数据点,nclusters是给定的簇类数目
cluster_centers包含初始化的nclusters个中心点,开始都是对象->(0,0,0)
'''
def kpp(points, cluster_centers):
cluster_centers[0] = (choice(points)) #随机选取第一个中心点
d = [0.0 for _ in xrange(len(points))] #列表,长度为len(points),保存每个点离最近的中心点的距离
for i in xrange(1, len(cluster_centers)): # i=1...len(c_c)-1
sum = 0
for j, p in enumerate(points):
d[j] = nearest_cluster_center(p, cluster_centers[:i])[1] #第j个数据点p与各个中心点距离的最小值
sum += d[j]
sum *= random()
for j, di in enumerate(d):
sum -= di
if sum > 0:
continue
cluster_centers[i] = (points[j])
break
for p in points:
p.group = nearest_cluster_center(p, cluster_centers)[0]
'''
points是数据点,nclusters是给定的簇类数目
'''
def lloyd(points, nclusters):
cluster_centers = [Point() for _ in xrange(nclusters)] #根据指定的中心点个数,初始化中心点,均为(0,0,0)
# call k++ init
kpp(points, cluster_centers) #选择初始种子点
# 下面是kmeans
lenpts10 = len(points) >> 10
changed = 0
while True:
# group element for centroids are used as counters
for cc in cluster_centers:
cc.x = 0
cc.y = 0
cc.group = 0
for p in points:
cluster_centers[p.group].group += 1 #与该种子点在同一簇的数据点的个数
cluster_centers[p.group].x += p.x
cluster_centers[p.group].y += p.y
for cc in cluster_centers: #生成新的中心点
cc.x /= cc.group
cc.y /= cc.group
# find closest centroid of each PointPtr
changed = 0 #记录所属簇发生变化的数据点的个数
for p in points:
min_i = nearest_cluster_center(p, cluster_centers)[0]
if min_i != p.group:
changed += 1
p.group = min_i
# stop when 99.9% of points are good
if changed <= lenpts10:
break
for i, cc in enumerate(cluster_centers):
cc.group = i
return cluster_centers
def print_eps(points, cluster_centers, W=400, H=400):
Color = namedtuple("Color", "r g b");
colors = []
for i in xrange(len(cluster_centers)):
colors.append(Color((3 * (i + 1) % 11) / 11.0,
(7 * i % 11) / 11.0,
(9 * i % 11) / 11.0))
max_x = max_y = -FLOAT_MAX
min_x = min_y = FLOAT_MAX
for p in points:
if max_x < p.x: max_x = p.x
if min_x > p.x: min_x = p.x
if max_y < p.y: max_y = p.y
if min_y > p.y: min_y = p.y
scale = min(W / (max_x - min_x),
H / (max_y - min_y))
cx = (max_x + min_x) / 2
cy = (max_y + min_y) / 2
print "%%!PS-Adobe-3.0\n%%%%BoundingBox: -5 -5 %d %d" % (W + 10, H + 10)
print ("/l {rlineto} def /m {rmoveto} def\n" +
"/c { .25 sub exch .25 sub exch .5 0 360 arc fill } def\n" +
"/s { moveto -2 0 m 2 2 l 2 -2 l -2 -2 l closepath " +
" gsave 1 setgray fill grestore gsave 3 setlinewidth" +
" 1 setgray stroke grestore 0 setgray stroke }def")
for i, cc in enumerate(cluster_centers):
print ("%g %g %g setrgbcolor" %
(colors[i].r, colors[i].g, colors[i].b))
for p in points:
if p.group != i:
continue
print ("%.3f %.3f c" % ((p.x - cx) * scale + W / 2,
(p.y - cy) * scale + H / 2))
print ("\n0 setgray %g %g s" % ((cc.x - cx) * scale + W / 2,
(cc.y - cy) * scale + H / 2))
print "\n%%%%EOF"
def main():
npoints = 30000
k = 7 # # clusters
points = generate_points(npoints, 10)
cluster_centers = lloyd(points, k)
print_eps(points, cluster_centers)
main()

上述代码实现的算法是针对二维数据的,所以Point对象有三个属性,分别是在x轴上的值、在y轴上的值、以及所属的簇的标识。函数lloyd是kmeans++算法的整体实现,其先是通过kpp函数选取合适的种子点,然后对数据集实行kmeans算法进行聚类。kpp函数的实现完全符合上述kmeans++的基本思路的2、3、4步。

② python kmeans聚类怎么确定k的个数

需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好。
另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚类你可能就会考虑分成三类(L,M,S)等!

③ spark kmeans 怎么算到中心点的距离

[Idx,C,sumD,D]=Kmeans(data,3,’dist’,’sqEuclidean’,’rep’,4) 等号右边: kmeans:K-均值聚类 data是你自己的输入数据 3 是你要聚成3类 dist sqEuclidean 这2个参数,表示距离函数为欧式距离。

④ k-means聚类算法python实现,导入的数据集有什么要求

一,K-Means聚类算法原理
k-means 算法接受参数 k
;然后将事先输入的n个数据对象划分为
k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对
象”(引力中心)来进行计算的。
K-means算法是最为经典的基于划分的聚类方法,是十大经典数据挖掘算法之一。K-means算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。

⑤ spark机器学习-聚类

spark机器学习-聚类
聚类算法是一种无监督学习任务,用于将对象分到具有高度相似性的聚类中,聚类算法的思想简单的说就是物以类聚的思想,相同性质的点在空间中表现的较为紧密和接近,主要用于数据探索与异常检测,最常用的一种聚类算法是K均值(K-means)聚类算法

算法原理
kmeans的计算方法如下:
1 选取k个中心点
2 遍历所有数据,将每个数据划分到最近的中心点中
3 计算每个聚类的平均值,并作为新的中心点
4 重复2-3,直到这k个中线点不再变化(收敛了),或执行了足够多的迭代
算法的时间复杂度上界为O(n*k*t), 其中k为输入的聚类个数,n为数据量,t为迭代次数。一般t,k,n均可认为是常量,时间和空间复杂度可以简化为O(n),即线性的
spark ml编码实践
可在spark-shell环境下修改参数调试以下代码,可以用实际的业务数据做测试评估,业务数据一般是多列,可以把维度列用VectorAssembler组装成向量列做为Kmeans算法的输入列,考虑现实的应用场景,比如做异常数据检测,正常数据分为一类,异常数据分为几类,分别统计正常数据与异常数据的数据量,求百分比等
<span style="font-size:18px;">import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors

val dataset = sqlContext.createDataFrame(Seq(
(1, Vectors.dense(0.0, 0.0, 0.0)),
(2, Vectors.dense(0.1, 0.1, 0.1)),
(3, Vectors.dense(0.2, 0.2, 0.2)),
(4, Vectors.dense(9.0, 9.0, 9.0)),
(5, Vectors.dense(1.1, 1.1, 0.1)),
(6, Vectors.dense(12, 14, 100)),
(6, Vectors.dense(1.1, 0.1, 0.2)),
(6, Vectors.dense(-2, -3, -4)),
(6, Vectors.dense(1.6, 0.6, 0.2))
)).toDF("id", "features")

// Trains a k-means model
val kmeans = new KMeans().setK(3).setMaxIter(20).setFeaturesCol("features").setPredictionCol("prediction")
val model = kmeans.fit(dataset)

// Shows the result
println("Final Centers: ")
model.clusterCenters.foreach(println)
model.clusterCenters.zipWithIndex.foreach(println)

val myres = model.transform(dataset).select("features","prediction")
myres.show()</span>
聚类算法是一类无监督式机器学习算法,聚类效果怎么评估,模型训练参数怎么调优,是否能用管道来训练模型来比较各种不同组合的参数的效果,即网格搜索法(gridsearch),先设置好待测试的参数,MLLib就会自动完成这些参数的不同组合,管道搭建了一条工作流,一次性完成了整个模型的调优,而不是独立对每个参数进行调优,这个还要再确认一下,查看SPARK-14516好像目前还没有一个聚类效果通用的自动的度量方法
像这种代码(不过现在这个代码有问题):
<span style="font-size:18px;">import org.apache.spark.ml.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.ml.tuning.{ ParamGridBuilder, CrossValidator }
import org.apache.spark.ml.{ Pipeline, PipelineStage }

val dataset = sqlContext.createDataFrame(Seq(
(1, Vectors.dense(0.0, 0.0, 0.0)),
(2, Vectors.dense(0.1, 0.1, 0.1)),
(3, Vectors.dense(0.2, 0.2, 0.2)),
(4, Vectors.dense(9.0, 9.0, 9.0)),
(5, Vectors.dense(1.1, 1.1, 0.1)),
(6, Vectors.dense(12, 14, 100)),
(6, Vectors.dense(1.1, 0.1, 0.2)),
(6, Vectors.dense(-2, -3, -4)),
(6, Vectors.dense(1.6, 0.6, 0.2))
)).toDF("id", "features")

val kmeans = new KMeans().setK(2).setMaxIter(20).setFeaturesCol("features").setPredictionCol("prediction")
//主要问题在这里,没有可用的评估器与label列设置
val evaluator = new BinaryClassificationEvaluator().setLabelCol("prediction")
val paramGrid = new ParamGridBuilder().addGrid(kmeans.initMode, Array("random")).addGrid(kmeans.k, Array(3, 4)).addGrid(kmeans.maxIter, Array(20, 60)).addGrid(kmeans.seed, Array(1L, 2L)).build()
val steps: Array[PipelineStage] = Array(kmeans)
val pipeline = new Pipeline().setStages(steps)

val cv = new CrossValidator().setEstimator(pipeline).setEvaluator(evaluator).setEstimatorParamMaps(paramGrid).setNumFolds(10)
// Trains a model
val pipelineFittedModel = cv.fit(dataset)</span>

⑥ python有没有内置kmeans函数

1、从Kmeans说起
Kmeans是一个非常基础的聚类算法,使用了迭代的思想,关于其原理这里不说了。下面说一下如何在matlab中使用kmeans算法。
创建7个二维的数据点:

复制代码 代码如下:
x=[randn(3,2)*.4;randn(4,2)*.5+ones(4,1)*[4 4]];

使用kmeans函数:

复制代码 代码如下:
class = kmeans(x, 2);

x是数据点,x的每一行代表一个数据;2指定要有2个中心点,也就是聚类结果要有2个簇。 class将是一个具有70个元素的列向量,这些元素依次对应70个数据点,元素值代表着其对应的数据点所处的分类号。

⑦ Python Kmeans聚类如何检验所得结果最优

需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好。

⑧ python代码如何应用系统聚类和K-means聚类法进行聚类分析 然后选择变量,建立适当的模型

-Means聚类算法
k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。

随机选择k个点作为初始的聚类中心。
对于剩下的点,根据其与聚类中心的距离,将其归入最近的簇。
对每个簇,计算所有点的均值作为新的聚类中心。
重复2,3直到聚类中心不再发生改变

Figure 1

K-means的应用
数据介绍:
现有1999年全国31个省份城镇居民家庭平均每人全年消费性支出的八大主要变量数据,这八大变量分别是:食品、衣着、家庭设备用品及服务、医疗保健、交通和通讯、娱乐教育文化服务、居住以及杂项商品和服务。利用已有数据,对31个省份进行聚类。

实验目的:
通过聚类,了解1999年各个省份的消费水平在国内的情况。

技术路线:
sklearn.cluster.Kmeans

数据实例:

⑨ 如何利用spark实现kmeans聚类算法

用spark做kmeans算法的例子,里边导入的数据总是有sample_linear_regression_data.txt sample_svm_data。

⑩ 如何在hadoop上运行 k-means算法

可以自己尝试写一个分布式的kmeans,也可以部署spark,使用spark-mllib里面的kmeans
如果对python比较熟悉,可以使用pyspark的mllib
如果只是hadoop,找找mahout算法包

阅读全文

与sparkkmeanspython相关的资料

热点内容
做解压的东西x 浏览:983
解压缩exe文件 浏览:62
汽车没有解压行吗 浏览:320
海南省分布式服务器云主机 浏览:31
世纪江湖聊天室源码 浏览:248
阿里网盘的文件如何解压 浏览:781
简单淘宝客源码 浏览:680
煎饼解压视频教程全集 浏览:340
平行线pdf 浏览:631
android锁屏不退出程序运行 浏览:635
sap连接的服务器地址是 浏览:426
linuxshell脚本从入门到精通 浏览:725
python进制均值 浏览:629
pdfformac 浏览:318
用虚拟服务器是什么目的 浏览:192
压缩机阿里巴巴 浏览:637
主图指标源码回踩 浏览:162
怎么验证服务器端口 浏览:612
如何添加密码卡 浏览:671
2021好声音在哪个app观看 浏览:126