㈠ 如何用python高效地学习数据结构
所谓数据结构,是指相互之间存在一种或多种特定关系的数据类型的集合。
Python在数据分析领域中,最常用的数据结构,莫过于DataFrame了,今天我们就介绍如何高效地学习DataFrame这种数据结构。
要学习好一种东西,最好给自己找一个目标,达到了这个目标,我们就是学好了。一般,我在学习一门新的语言的数据结构的时候,一般要求自己达到以下五个要求:
第一个问题:概念,这种数据结构的概念是什么呢?
第二个问题:定义,如何定义这种数据结构呢?
第三个问题:限制,使用这种数据结构,有什么限制呢?
第四个问题:访问,访问这种数据结构内的数据的方式是什么呢?
第五个问题:修改,如何对这种数据结构进行增加元素、删除元素以及修改元素呢?
㈡ 如何用python批量插入数据到mysql数据库,用list
MySQL 的 Binlog 记录着 MySQL 数据库的所有变更信息,了解 Binlog 的结构可以帮助我们解析Binlog,甚至对 Binlog 进行一些修改,或者说是“篡改”,例如实现类似于 Oracle 的 flashback 的功能,恢复误删除的记录,把 update 的记录再还原回去等。本文将带您探讨一下这些神奇功能的实现,您会发现比您想象地要简单得多。本文指的 Binlog 是 ROW 模式的 Binlog,这也是 MySQL 8 里的默认模式,STATEMENT 模式因为使用中有很多限制,现在用得越来越少了。
Binlog 由事件(event)组成,请注意是事件(event)不是事务(transaction),一个事务可以包含多个事件。事件描述对数据库的修改内容。
现在我们已经了解了 Binlog 的结构,我们可以试着修改 Binlog 里的数据。例如前面举例的 Binlog 删除了一条记录,我们可以试着把这条记录恢复,Binlog 里面有个删除行(DELETE_ROWS_EVENT)的事件,就是这个事件删除了记录,这个事件和写行(WRITE_ROWS_EVENT)的事件的数据结构是完全一样的,只是删除行事件的类型是 32,写行事件的类型是 30,我们把对应的 Binlog 位置的 32 改成 30 即可把已经删除的记录再插入回去。从前面的 “show binlog events” 里面可看到这个 DELETE_ROWS_EVENT 是从位置 378 开始的,这里的位置就是 Binlog 文件的实际位置(以字节为单位)。从事件(event)的结构里面可以看到 type_code 是在 event 的第 5 个字节,我们写个 Python 小程序把把第383(378+5=383)字节改成 30 即可。当然您也可以用二进制编辑工具来改。
找出 Binlog 中的大事务
由于 ROW 模式的 Binlog 是每一个变更都记录一条日志,因此一个简单的 SQL,在 Binlog 里可能会产生一个巨无霸的事务,例如一个不带 where 的 update 或 delete 语句,修改了全表里面的所有记录,每条记录都在 Binlog 里面记录一次,结果是一个巨大的事务记录。这样的大事务经常是产生麻烦的根源。我的一个客户有一次向我抱怨,一个 Binlog 前滚,滚了两天也没有动静,我把那个 Binlog 解析了一下,发现里面有个事务产生了 1.4G 的记录,修改了 66 万条记录!下面是一个简单的找出 Binlog 中大事务的 Python 小程序,我们知道用 mysqlbinlog 解析的 Binlog,每个事务都是以 BEGIN 开头,以 COMMIT 结束。我们找出 BENGIN 前面的 “# at” 的位置,检查 COMMIT 后面的 “# at” 位置,这两个位置相减即可计算出这个事务的大小,下面是这个 Python 程序的例子。
切割 Binlog 中的大事务
对于大的事务,MySQL 会把它分解成多个事件(注意一个是事务 TRANSACTION,另一个是事件 EVENT),事件的大小由参数 binlog-row-event-max-size 决定,这个参数默认是 8K。因此我们可以把若干个事件切割成一个单独的略小的事务
ROW 模式下,即使我们只更新了一条记录的其中某个字段,也会记录每个字段变更前后的值,这个行为是 binlog_row_image 参数控制的,这个参数有 3 个值,默认为 FULL,也就是记录列的所有修改,即使字段没有发生变更也会记录。这样我们就可以实现类似 Oracle 的 flashback 的功能,我个人估计 MySQL 未来的版本从可能会基于 Binlog 推出这样的功能。
了解了 Binlog 的结构,再加上 Python 这把瑞士军刀,我们还可以实现很多功能,例如我们可以统计哪个表被修改地最多?我们还可以把 Binlog 切割成一段一段的,然后再重组,可以灵活地进行 MySQL 数据库的修改和迁移等工作。
㈢ python中的数据结构分析
1.Python数据结构篇
数据结构篇主要是阅读[Problem Solving with Python](Welcome to Problem Solving with Algorithms and Data Structures) [该网址链接可能会比较慢]时写下的阅读记录,当然,也结合了部分[算法导论](Introction to Algorithms)
中的内容,此外还有不少wikipedia上的内容,所以内容比较多,可能有点杂乱。这部分主要是介绍了如何使用Python实现常用的一些数据结构,例
如堆栈、队列、二叉树等等,也有Python内置的数据结构性能的分析,同时还包括了搜索和排序(在算法设计篇中会有更加详细的介绍)的简单总结。每篇文
章都有实现代码,内容比较多,简单算法一般是大致介绍下思想及算法流程,复杂的算法会给出各种图示和代码实现详细介绍。
**这一部分是下
面算法设计篇的前篇,如果数据结构还不错的可以直接看算法设计篇,遇到问题可以回来看数据结构篇中的某个具体内容充电一下,我个人认为直接读算法设计篇比
较好,因为大家时间也都比较宝贵,如果你会来读这些文章说明你肯定有一定基础了,后面的算法设计篇中更多的是思想,这里更多的是代码而已,嘿嘿。**
(1)[搜索](Python Data Structures)
简述顺序查找和二分查找,详述Hash查找(hash函数的设计以及如何避免冲突)
(2)[排序](Python Data Structures)
简述各种排序算法的思想以及它的图示和实现
(3)[数据结构](Python Data Structures)
简述Python内置数据结构的性能分析和实现常用的数据结构:栈、队列和二叉堆
(4)[树总结](Python Data Structures)
简述二叉树,详述二叉搜索树和AVL树的思想和实现
2.Python算法设计篇
算法设计篇主要是阅读[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)[**点击链接可进入Springer免费下载原书电子版**]之后写下的读书总结,原书大部分内容结合了经典书籍[算法导论](Introction to Algorithms),
内容更加细致深入,主要是介绍了各种常用的算法设计思想,以及如何使用Python高效巧妙地实现这些算法,这里有别于前面的数据结构篇,部分算法例如排
序就不会详细介绍它的实现细节,而是侧重于它内在的算法思想。这部分使用了一些与数据结构有关的第三方模块,因为这篇的重点是算法的思想以及实现,所以并
没有去重新实现每个数据结构,但是在介绍算法的同时会分析Python内置数据结构以及第三方数据结构模块的优缺点,也就意味着该篇比前面都要难不少,但
是我想我的介绍应该还算简单明了,因为我用的都是比较朴实的语言,并没有像算法导论一样列出一堆性质和定理,主要是对着某个问题一步步思考然后算法就出来
了,嘿嘿,除此之外,里面还有很多关于python开发的内容,精彩真的不容错过!
这里每篇文章都有实现代码,但是代码我一般都不会分
析,更多地是分析算法思想,所以内容都比较多,即便如此也没有包括原书对应章节的所有内容,因为内容实在太丰富了,所以我只是选择经典的算法实例来介绍算
法核心思想,除此之外,还有不少内容是原书没有的,部分是来自算法导论,部分是来自我自己的感悟,嘻嘻。该篇对于大神们来说是小菜,请一笑而过,对于菜鸟
们来说可能有点难啃,所以最适合的是和我水平差不多的,对各个算法都有所了解但是理解还不算深刻的半桶水的程序猿,嘿嘿。
本篇的顺序按照原书[Python Algorithms: Mastering Basic Algorithms in the Python Language](Python Algorithms: Mastering Basic Algorithms in the Python Language)的章节来安排的(章节标题部分相同部分不同哟),为了节省时间以及保持原着的原滋原味,部分内容(一般是比较难以翻译和理解的内容)直接摘自原着英文内容。
**1.
你也许觉得很多内容你都知道嘛,没有看的必要,其实如果是我的话我也会这么想,但是如果只是归纳一个算法有哪些步骤,那这个总结也就没有意义了,我觉得这
个总结的亮点在于想办法说清楚一个算法是怎么想出来的,有哪些需要注意的,如何进行优化的等等,采用问答式的方式让读者和我一起来想出某个问题的解,每篇
文章之后都还有一两道小题练手哟**
**2.你也许还会说算法导论不是既权威又全面么,基本上每个算法都还有详细的证明呢,读算法导论岂
不更好些,当然,你如果想读算法导论的话我不拦着你,读完了感觉自己整个人都不好了别怪小弟没有提醒你哟,嘻嘻嘻,左一个性质右一个定理实在不适合算法科
普的啦,没有多少人能够坚持读完的。但是码农与蛇的故事内容不多哟,呵呵呵**
**3.如果你细读本系列的话我保证你会有不少收获的,需要看算法导论哪个部分的地方我会给出提示的,嘿嘿。温馨提示,前面三节内容都是介绍基础知识,所以精彩内容从第4节开始哟,么么哒 O(∩_∩)O~**
(1)[Python Algorithms - C1 Introction](Python Algorithms)
本节主要是对原书中的内容做些简单介绍,说明算法的重要性以及各章节的内容概要。
(2)[Python Algorithms - C2 The basics](Python Algorithms)
**本节主要介绍了三个内容:算法渐近运行时间的表示方法、六条算法性能评估的经验以及Python中树和图的实现方式。**
(3)[Python Algorithms - C3 Counting 101](Python Algorithms)
原书主要介绍了一些基础数学,例如排列组合以及递归循环等,但是本节只重点介绍计算算法的运行时间的三种方法
(4)[Python Algorithms - C4 Inction and Recursion and Rection](Python Algorithms)
**本节主要介绍算法设计的三个核心知识:Inction(推导)、Recursion(递归)和Rection(规约),这是原书的重点和难点部分**
(5)[Python Algorithms - C5 Traversal](Python Algorithms)
**本节主要介绍图的遍历算法BFS和DFS,以及对拓扑排序的另一种解法和寻找图的(强)连通分量的算法**
(6)[Python Algorithms - C6 Divide and Combine and Conquer](Python Algorithms)
**本节主要介绍分治法策略,提到了树形问题的平衡性以及基于分治策略的排序算法**
(7)[Python Algorithms - C7 Greedy](Python Algorithms)
**本节主要通过几个例子来介绍贪心策略,主要包括背包问题、哈夫曼编码和最小生成树等等**
(8)[Python Algorithms - C8 Dynamic Programming](Python Algorithms)
**本节主要结合一些经典的动规问题介绍动态规划的备忘录法和迭代法这两种实现方式,并对这两种方式进行对比**
(9)[Python Algorithms - C9 Graphs](Python Algorithms)
**本节主要介绍图算法中的各种最短路径算法,从不同的角度揭示它们的内核以及它们的异同**
㈣ python中列表的这种插入怎么理解
LZ,列表是python数据结构之一,而切片处理是列表常见的数据处理方法,,,
列表中的每个元素都分配一个数字(索引),第一个是0,第二个是1,元素倒数时则以1开始,,,
L[2]为读取第三个元素: L[2] = 2
L[2:]为从第三个元素开始截取列表: L[2:] = [2,3,4]
L[:2]为截取第三个元素之前的列表: L[:2] = [0,1]
L[2:2]=[8,9]即:以第三个元素前开始,第三个之前结束,,,就是说在第三个元素之前插入[8,9]: L=[0, 1, 8, 9, 2, 3, 4]
另外插入赋值时必须用列表操作符“[ ]”,,
Python的灵活多变,有时候需要多动手操作才能理解囖,,科科,,,
㈤ python 如何表示数据结构
Python中最基本的数据结构。序列中的每个元素都分配一个数字 - 它的位置,或索引,第一个索引是0,第二个索引是1,依此类推
列表
1、定义列表,取出列表中的值
1
1 names = [] #定义空列表 2 names = ['a','b','c'] #定义一个非空列表 3 4 # 取出列表中的值 5 6 >>> names = ['a','b','c'] 7 >>> names[0] 8 'a' 9 >>> names[1]10 'b'11 >>> names[2]12 'c'13 >>> names[-1]#倒着取最后一个值14 'c'
2、切片
1
1 >>> names = ['a','b','c','d'] # 列表的下标值是从0开始取值的 2 >>> names[1:3] #取1到3之间的元素,包括1,不包括3 3 ['b', 'c'] 4 >>> names[1:-1] #取1到-1之间的元素,包括1,不包括-1 5 ['b', 'c'] 6 >>> names[0:3] 7 ['a', 'b', 'c'] 8 >>> names[:3] #从头开始取,0可以省略,效果等同于names[0:3] 9 ['a', 'b', 'c']10 >>> names[3:] #想取到最后一个值,必须不能写-1,只能这么写11 ['d']12 >>> names[0::2] #后面的2表示:每隔一个元素就取一个13 ['a', 'c']14 >>> names[::2] #从头开始0可以省略,效果跟上一句一样15 ['a', 'c']
切片小结:
①序列始终都是从左向右切片的,不能是从右向左
①列表切片时,起始位的元素是包括的,结束位的元素是不包括(又叫顾头不顾尾),最后一个位置表示步长(names[开始位:结束位:步长])
②如果从0位置取值,0可以省略
③想取最后一个值时,结束位不能是-1,因为结束位的元素不包括,所以只能留空
㈥ python有没有数据结构库
python把数据库查询结果写入文件的例子如下:
//以只读方式打开nodeset.txt
file_nodeset=open("nodeset.txt","r")
file_relationship=open("follower_followee.txt","a")
t=file_nodeset.readline()
while(''!=t):
cur=conn.cursor()
cur.execute("select * from follower_followee where followee_id=%s",t)
rows=cur.fetchall()//从数据库取出查询结果的一行
for row in rows: //开始循环处理
if (row[0] in nodeSet):
print('haha')
file_relationship.write('%s %s\n' % (row[0],row[1])) //写入文件
cur.close()
t=file_nodeset.readline()
file_nodeset.close()
file_relationship.close()
㈦ Python中如何实现基本的数据结构
要学的,python只是继承了list,dict,set等常用的数据结构。一般情况只要将几种内置对象组合就可以。如果你要实现复杂的数据结构还是要自己实现。
㈧ python 怎么学习数据结构
在Python中有三种内建的数据结构——列表、元组和字典
1:列表:
列表list是处理一组有序项目的数据结构,即你可以在一个列表中存储一个序列的项目, 在Python中,你在每个项目之间用逗号分割
列表中的项目应该包括在方括号中,这样Python就知道你是在指明一个列表。如,可以看出来,列表可以有字符串,也可以有数字。即可以包含多种类型。
㈨ python 数据结构 有哪些
# -*- coding: <utf-8> -*-
#-------------------2017-7-20------------------
#-------------------【字符串】--------------------
#字符串:单引号,双引号都可以
print("HelloWorld");
print('HelloWorld')
print(''' This is the first line
This is the second line
This is the last line''')
#Format字符串
age = 3;
name = "Tom"
print("{0} is {1} years old".format(name, age)) #格式打印:换行
#数值--->字符串: str()方法
s = str(age)
print("s = " + s)
print(name + " is " + str(age) + " years old ") #字符串的拼接
print(name, " is ", str(age), " years old ") #字符串的拼接:逗号连接也是可以的
print("What's your name? \nTom")
#-------------------【数据类型】--------------------
#Python的数据类型生命的时候不用声明类型,系统自己会识别
a = 3
b = 4
c = 5.66
d = 8.0
e = complex(c, d)
f = complex(float(a), float(b))
print("a is type", type(a))
print("c is type", type(c))
print("e is type", type(e))
print("a + b = ", a + b)
print("a / b = ", a / b)
print("c / a = ", c / a)
print("c // a = ", c // a) #往下圆整为最接近的整数
print("e = ", e)
print("e + f = ", e + f)
#-------------------【列表:List:不要求List中的元素是同种类型】--------------------
#首先是打印中文
print("你好") #需要在上方设置成utf-8的编码形式
#创建一个list
number_List = [1, 2, 3, 4, 5] #方括号,逗号隔开,索引从0开始
print(number_List)
print("number_List = " + str(number_List))
#创建一个以字符串为列表的List
string_List= ["abc", "cde", "fhi"]
mixed_List = [1, "java", 3, "A"]
print("string_List = " + str(string_List))
print("mixed_List = " + str(mixed_List))
#访问列表中的元素
second_Number = number_List[1]
second_string = string_List[1]
print("second_Number = " + str(second_Number))
print("second_string = " + str(second_string))
#更新列表中的元素
number_List[1] = 40
print("number_List = " + str(number_List))
#删除列表中的元素
del number_List[1] #del 方法
print("after deleting: number_List = " + str(number_List))
#一些List的操作
print(len([1,2,3])) #长度
print([1,2,3] + [4,5,6]) #拼接
print(["Hello"] * 4) #复制
print(3 in [1,2,3]) #判断是否在List中
abcd_List = ["a", "b", "c", "d"]
print(abcd_List[1])
print(abcd_List[-2]) #打印倒数第二个
print(abcd_List[1:]) #截取1-end的元素:冒号“:”指一直到结尾
List_a = [1,2,3]
List_a.append(4) #append 方法
print("After append: List_a = " + str(List_a))
List_a.remove(2) #remove 方法
print("After remove: List_a = " + str(List_a))
#-------------------【元组:tuple】--------------------
#tuple是一个特殊的List,但是是一个一旦创建就不可更改的List
#但是tuple里面的list里面的元素是可以更改的
#tuple没有append, extend, remove, pop方法
tuple_1 = (2,) #逗号是一定要加的
mixed_tuple = (1, 2, [1, 2])
print("mixed_tuple = " + str(mixed_tuple))
#tuple的元素的更改
mixed_tuple[2][0] = "c"
mixed_tuple[2][1] = "d"
#mixed_tuple[1] = 4 #tuple里面的数据不可更改,但是tuple里面的List的不能改了
print("after modified: mixed_tuple = " + str(mixed_tuple))
#tuple里面的元素不可更改,但是可以将tuple当做一个整体进行删除
del mixed_tuple #作为一个整体将tuple删除
#一些tuple的操作
print(len((1,2,3))) #长度
print((1,2,3) + (4,5,6)) #拼接
print(("Hello") * 4) #复制
print(3 in (1,2,3)) #判断是否在List中
abcd_tuple = ["a", "b", "c", "d"]
print(abcd_tuple[1])
print(abcd_tuple[-2]) #打印倒数第二个
print(abcd_tuple[1:]) #截取1-end的元素:冒号“:”指一直到结尾
#-------------------【字典:】--------------------
#tuple是一个特殊的List,但是是一个一旦创建就不可更改的List
㈩ Python数据类型和数据结构。
1.1元组的创建
创建时可不指定元素的个数,相当于不定长的数组,但一旦创建就不能修改元组的长度。
tuple = (元素1, 元素2, ...)
#创建并初始化
tuple = ("apple", "banana","grape", "orange" )
#创建一个空的元组
tuple = ()