导航:首页 > 编程语言 > python运行在spark上

python运行在spark上

发布时间:2022-08-10 01:28:45

Ⅰ 机器学习实践:如何将Spark与python结合

可以学习一下林大贵这本书,从头到尾教你如何使用python+spark+hadoop实现常用的算法训练和部署。

《Python+Spark2.0+Hadoop机器学习与大数据实战_林大贵》

链接:https://pan..com/s/1VGUOyr3WnOb_uf3NA_ZdLA

提取码:ewzf

Ⅱ 如何运行含spark的python脚本

1、Spark脚本提交/运行/部署1.1spark-shell(交互窗口模式)运行Spark-shell需要指向申请资源的standalonespark集群信息,其参数为MASTER,还可以指定executor及driver的内存大小。sudospark-shell--executor-memory5g--driver-memory1g--masterspark://192.168.180.216:7077spark-shell启动完后,可以在交互窗口中输入Scala命令,进行操作,其中spark-shell已经默认生成sc对象,可以用:valuser_rdd1=sc.textFile(inputpath,10)读取数据资源等。1.2spark-shell(脚本运行模式)上面方法需要在交互窗口中一条一条的输入scala程序;将scala程序保存在test.scala文件中,可以通过以下命令一次运行该文件中的程序代码:sudospark-shell--executor-memory5g--driver-memory1g--masterspark//192.168.180.216:7077

Ⅲ spark python脚本怎么执行

前段时间使用了一下google的博客空间,感觉也很一般,所以现在把那里的几篇文章转过来。
执行python脚本只需要对python文件做如下操作即可:
在python文件里第一行加上#!
/usr/bin/python,即你的python解释器所在的目录。另外还有一种写法是#!
/usr/bin/env
python
编辑完成python脚本文件后为它加上可执行权限。例如你的python脚本文件叫做runit.py,那么就在shell中输入如下命令:chmod
+x
runit.py
之后直接在shell中输入./runit.py就可以执行你的python程序了。
当然这是在Linux下的操作,如果想在windows下直接执行Python程序,就需要使用py2exe工具将python源程序编译成exe文件了。

Ⅳ 如何用Python写spark

1.RDD是PariRDD类型
def add1(line):
return line[0] + line[1]
def add2(x1,x2):
return x1 + x2
sc = SparkContext(appName="gridAnalyse")
rdd = sc.parallelize([1,2,3])
list1 = rdd.map(lambda line: (line,1)).map(lambda (x1,x2) : x1 + x2).collect() #只有一个参数,通过匹配来直接获取(赋值给里面对应位置的变量)
list1 = rdd.map(lambda line: (line,1)).map(lambda x1,x2 : x1 + x2).collect() #错误,相当于函数有两个参数
list2 = rdd.map(lambda line: (line,1)).map(lambda line : line[0] + line[1]).collect() #只有一个参数,参数是Tuple或List数据类型,再从集合的对应位置取出数据
list3 = rdd.map(lambda line: (line,1)).map(add1).collect() #传递函数,将Tuple或List类型数据传给形参
list4 = rdd.map(lambda line: (line,1)).map(add2).collect() #错误,因为输入只有一个,却有两个形参
当RDD是PairRDD时,map中可以写lambda表达式和传入一个函数。
a、写lambda表达式:
可以通过(x1,x2,x3)来匹配获取值;或者使用line获取集合,然后从集合中获取。
b、传入函数
根据spark具体的transaction OR action 操作来确定自定义函数参数的个数,此例子中只有一个参数,从形参(集合类型)中获取相应位置的数据。

Ⅳ 如何在Python IDE spyder 中集成运行spark

  1. local:本地单进程模式,用于本地开发测试Spark代码

  2. standalone:分布式集群模式,Master-Worker架构,Master负责调度,Worker负责具体Task的执行

  3. on yarn/mesos:运行在yarn/mesos等资源管理框架之上,yarn/mesos提供资源管理,spark提供计算调度,并可与其他计算框架(如MapRece/MPI/Storm)共同运行在同一个集群之上 (使用cloudera搭建的集群就是这种情况)

  4. on cloud(EC2):运行在AWS的EC2之上。

Ⅵ 求助,python + spark运行程序出现错误

你全是win环境
代码没有什么太多的问题 spark环境检查 测试pyspark能否正常使用
再像你这样提交spark作业
tmprdd1 = csdnRDD.map(lambda x: (x.split("\t")[2]))
x.split("\t")会产生一个list,有些数据是异常异常,产生的list不一定会有三个元素,所以就会异常退出。
你可以使用csdnRDD.map(lambda x:x.split("\t")).filter(lambda x:len(x)<3) 看看有哪一写异常数据,然后确定如何过滤掉这些异常数据。

Ⅶ 请教《Spark 机器学习》的 python 源代码文件如何执行

Apache Spark是一个分布式计算框架,旨在简化运行于计算机集群上的并行程序的编写。
该框架对资源调度,任务的提交、执行和跟踪,节点间的通信以及数据并行处理的内在底层操作都进行了抽象。它提供了一个更高级别的API用于处理分布式数据。

Ⅷ 如何在ipython或python中使用Spark

在ipython中使用spark
说明:
spark 1.6.0
scala 2.10.5
spark安装路径是/usr/local/spark;已经在.bashrc中配置了SPARK_HOME环境变量。
方法一
/usr/local/Spark/bin/pyspark默认打开的是Python,而不是ipython。通过在pyspark文件中添加一行,来使用ipython打开。
cp pyspark ipyspark
vi ipyspark
# 在最前面添加
IPYTHON=1
# 启动
ipyspark
方法二:
通过为spark创建一个ipython 配置的方式实现。
# 为spark创建一个ipython 配置
ipython profile create spark
# 创建启动配置文件
cd ~/.config/ipython/profile_spark/startup
vi 00-pyspark-setup.py
在00-pyspark-setup.py中添加如下内容:
import os
import sys
# Configure the environment
if 'SPARK_HOME' not in os.environ:
os.environ['SPARK_HOME'] = '/srv/spark'
# Create a variable for our root path
SPARK_HOME = os.environ['SPARK_HOME']
# Add the PySpark/py4j to the Python Path
sys.path.insert(0, os.path.join(SPARK_HOME, "python", "pyspark"))
sys.path.insert(0, os.path.join(SPARK_HOME, "python", "lib", "py4j-0.9-src.zip"))
sys.path.insert(0, os.path.join(SPARK_HOME, "python"))
启动ipython
ipython –profile spark
测试程序
在ipython中输入一下命令,如果下面的程序执行完后输出一个数字,说明正确。
from pyspark import SparkContext
sc = SparkContext( 'local', 'pyspark')
def isprime(n):
"""
check if integer n is a prime
"""
# make sure n is a positive integer
n = abs(int(n))
# 0 and 1 are not primes
if n < 2:
return False
# 2 is the only even prime number
if n == 2:
return True
# all other even numbers are not primes
if not n & 1:
return False
# for all odd numbers
for x in range(3, int(n**0.5)+1, 2):
if n % x == 0:
return False
return True
# Create an RDD of numbers from 0 to 1,000,000
nums = sc.parallelize(xrange(1000000))
# Compute the number of primes in the RDD
print 逗Result: 地, nums.filter(isprime).count()
方法三
将上面的程序放入test.py文件,执行命令python test.py。发现错误。因为没有将pyspark路径加入PYTHONPATH环境变量。
在~/.bashrc或/etc/profile中添加如下内容:
# python can call pyspark directly
export PYTHONPATH=$SPARK_HOME/python:$SPARK_HOME/python/pyspark:$SPARK_HOME/python/lib/py4j-0.9-src.zip:$PYTHONPATH
执行如下命令:
# 使配置生效
source ~/.bashrc
# 测试程序
python test.py
此时,已经能够运行了。

阅读全文

与python运行在spark上相关的资料

热点内容
交通信号灯单片机课程设计 浏览:826
如何测试流媒体服务器的并发能力 浏览:161
溯源码有分国家认证的吗 浏览:218
如何通过app查询产检报告 浏览:944
拉结尔安卓手机怎么用 浏览:695
驱动级进程代理源码 浏览:782
androidshape画线 浏览:510
程序员想辞职被拒绝 浏览:101
java面试逻辑 浏览:749
如何下载全英文app 浏览:724
js函数式编程指南 浏览:380
为什么安卓手机相机启动会卡 浏览:341
python中t是什么意思 浏览:765
移动硬盘内存加密 浏览:407
单片机测角度 浏览:864
URL服务器地址怎么填 浏览:438
压缩饼干会导致血糖高吗 浏览:569
cad中xc命令怎么用 浏览:424
戴尔服务器怎么看网卡接口 浏览:823
盐铁论pdf 浏览:424