❶ 串口通信如何使用MODBUS协议举个C语言的例子。
Modbus两种协议的编程方法:
1、LRC校验
LRC域是一个包含一个8位二进制值的字节。LRC值由传输设备来计算并放到消息帧中,接收设备在接收消息的过程中计算LRC,并将它和接收到消息中LRC域中的值比较,如果两值不等,说明有错误。
LRC校验比较简单,它在ASCII协议中使用,检测了消息域中除开始的冒号及结束的回车换行号外的内容。它仅仅是把每一个需要传输的数据按字节叠加后取反加1即可。下面是它对应的代码:
BYTE GetCheckCode(const char * pSendBuf, int nEnd)//获得校验码
{
BYTE byLrc = 0;
char pBuf[4];
int nData = 0;
for(i=1; i<end; i+=2) //i初始为1,避开“开始标记”冒号
{
//每两个需要发送的ASCII码转化为一个十六进制数
pBuf [0] = pSendBuf [i];
pBuf [1] = pSendBuf [i+1];
pBuf [2] = '\0';
sscanf(pBuf,"%x",& nData);
byLrc += nData;
}
byLrc = ~ byLrc;
byLrc ++;
return byLrc;
}
2、CRC校验
CRC域是两个字节,包含一16位的二进制值。它由传输设备计算后加入到消息中。接收设备重新计算收到消息的CRC,并与接收到的CRC域中的值比较,如果两值不同,则有误。
CRC是先调入一值是全“1”的16位寄存器,然后调用一过程将消息中连续的8位字节各当前寄存器中的值进行处理。仅每个字符中的8Bit数据对CRC有效,起始位和停止位以及奇偶校验位均无效。
CRC产生过程中,每个8位字符都单独和寄存器内容相或(OR),结果向最低有效位方向移动,最高有效位以0填充。LSB被提取出来检测,如果LSB为1,寄存器单独和预置的值或一下,如果LSB为0,则不进行。整个过程要重复8次。在最后一位(第8位)完成后,下一个8位字节又单独和寄存器的当前值相或。最终寄存器中的值,是消息中所有的字节都执行之后的CRC值。
CRC添加到消息中时,低字节先加入,然后高字节。下面是它对应的代码:
WORD GetCheckCode(const char * pSendBuf, int nEnd)//获得校验码
{
WORD wCrc = WORD(0xFFFF);
for(int i=0; i<nEnd; i++)
{
wCrc ^= WORD(BYTE(pSendBuf[i]));
for(int j=0; j<8; j++)
{
if(wCrc & 1)
{
wCrc >>= 1;
wCrc ^= 0xA001;
}
else
{
wCrc >>= 1;
}
}
}
return wCrc;
}
对于一条RTU协议的命令可以简单的通过以下的步骤转化为ASCII协议的命令:
1、 把命令的CRC校验去掉,并且计算出LRC校验取代。
2、 把生成的命令串的每一个字节转化成对应的两个字节的ASCII码,比如0x03转化成0x30,0x33(0的ASCII码和3的ASCII码)。
3、 在命令的开头加上起始标记“:”,它的ASCII码为0x3A。
4、 在命令的尾部加上结束标记CR,LF(0xD,0xA),此处的CR,LF表示回车和换行的ASCII码。
掌握两种协议的编程方法,剩下的就是C语言的问题了。
悉雨辰寂
❷ modbus tcp 协议的c语言怎么写
如果用C语言编程实现MODBUS通讯,难度还是很大的。首先需要实现TCP通讯,这里面涉及到TCP侦听模块、TCP数据收发模块、断线重连模块、如果是多信道连接,还需要处理多信道并行通讯等。在实现了TCP通讯核心程序的基础上,通过数据发送程序模块,按照MODBUS指令格式,向前端设备发出正确的MODBUS指令(RTU或ASCII)即可,然后就是通过数据接收模块等待接收前端返回的MODBUS数据包,这就还要编写MODBUS指令生成模块,MODBUS数据解析模块。
上述只是一个大致的思路,里面涉及的编程技术很多,有的技术环节还是很有挑战性的,比如大规模多信道并行通讯。
❸ 求助:谁能给我一份用C编写的Modbus程序
modbus程序应包含通讯模块,modbus读写指令生成模块,人机交互等主要组成部分。通过人机交互,设定前端设备id,以及通讯参数,寄存器地址等,通过modbus指令生成模块生成指令,并将指令通过通讯模块送出,并接收返回数据 ,数据解析后通过人机交...
❹ C语言如何编写modbus RTU协议
如果你想了解MODBUS-RTU,看看下面这个链接。
http://www.360doc.com/content/14/0120/10/7991404_346584755.shtml
网上MODBUS-RTU的实例很多,你可以借鉴。
但是,协议这个东西不是变成达到的,它是在程序设计之前就要拟定好,协议定好以后才有C程序按照协议制定的来编写。针对modbus-rtu来说,你需要把链接里第二部分的协议基本约定看懂之后,再来着手。
加油吧。这个会花些时间。
❺ 关于C#编写modbus通讯协议的求助
Modbus 协议是应用于电子控制器上的一种通用语言。通过此协议,控制器相互之间、控制器经由网络(例如以太网)和其它设备之间可以通信。它已经成为一通用工业标准。有了它,不同厂商生产的控制设备可以连成工业网络,进行集中监控。
此协议定义了一个控制器能认识使用的消息结构,而不管它们是经过何种网络进行通信的。它描述了一控制器请求访问其它设备的过程,如果回应来自其它设备的请求,以及怎样侦测错误并记录。它制定了消息域格局和内容的公共格式。
当在一Modbus网络上通信时,此协议决定了每个控制器须要知道它们的设备地址,识别按地址发来的消息,决定要产生何种行动。如果需要回应,控制器将生成反馈信息并用Modbus协议发出。在其它网络上,包含了Modbus协议的消息转换为在此网络上使用的帧或包结构。这种转换也扩展了根据具体的网络解决节地址、路由路径及错误检测的方法。
1、在Modbus网络上转输
标准的Modbus口是使用一RS-232C兼容串行接口,它定义了连接口的针脚、电缆、信号位、传输波特率、奇偶校验。控制器能直接或经由Modem组网。
控制器通信使用主—从技术,即仅一设备(主设备)能初始化传输(查询)。其它设备(从设备)根据主设备查询提供的数据作出相应反应。典型的主设备:主机和可编程仪表。典型的从设备:可编程控制器。
主设备可单独和从设备通信,也能以广播方式和所有从设备通信。如果单独通信,从设备返回一消息作为回应,如果是以广播方式查询的,则不作任何回应。Modbus协议建立了主设备查询的格式:设备(或广播)地址、功能代码、所有要发送的数据、一错误检测域。
从设备回应消息也由Modbus协议构成,包括确认要行动的域、任何要返回的数据、和一错误检测域。如果在消息接收过程中发生一错误,或从设备不能执行其命令,从设备将建立一错误消息并把它作为回应发送出去。
2、在其它类型网络上转输
在其它网络上,控制器使用对等技术通信,故任何控制都能初始和其它控制器的通信。这样在单独的通信过程中,控制器既可作为主设备也可作为从设备。提供的多个内部通道可允许同时发生的传输进程。
在消息位,Modbus协议仍提供了主—从原则,尽管网络通信方法是“对等”。如果一控制器发送一消息,它只是作为主设备,并期望从从设备得到回应。同样,当控制器接收到一消息,它将建立一从设备回应格式并返回给发送的控制器。
3、查询—回应周期
(1)查询
查询消息中的功能代码告之被选中的从设备要执行何种功能。数据段包含了从设备要执行功能的任何附加信息。例如功能代码03是要求从设备读保持寄存器并返回它们的内容。数据段必须包含要告之从设备的信息:从何寄存器开始读及要读的寄存器数量。错误检测域为从设备提供了一种验证消息内容是否正确的方法。
(2)回应
如果从设备产生一正常的回应,在回应消息中的功能代码是在查询消息中的功能代码的回应。数据段包括了从设备收集的数据:象寄存器值或状态。如果有错误发生,功能代码将被修改以用于指出回应消息是错误的,同时数据段包含了描述此错误信息的代码。错误检测域允许主设备确认消息内容是否可用。
二、两种传输方式
控制器能设置为两种传输模式(ASCII或RTU)中的任何一种在标准的Modbus网络通信。用户选择想要的模式,包括串口通信参数(波特率、校验方式等),在配置每个控制器的时候,在一个Modbus网络上的所有设备都必须选择相同的传输模式和串口参数。
ASCII模式
:
地址
功能代码
数据数量
数据1
...
数据n
LRC高字节
LRC低字节
回车
换行
RTU模式
地址
功能代码
数据数量
数据1
...
数据n
CRC低字节
CRC高字节
所选的ASCII或RTU方式仅适用于标准的Modbus网络,它定义了在这些网络上连续传输的消息段的每一位,以及决定怎样将信息打包成消息域和如何解码。
在其它网络上(象MAP和Modbus Plus)Modbus消息被转成与串行传输无关的帧。
1、ASCII模式
当控制器设为在Modbus网络上以ASCII(美国标准信息交换代码)模式通信,在消息中的每个8Bit字节都作为两个ASCII字符发送。这种方式的主要优点是字符发送的时间间隔可达到1秒而不产生错误。
代码系统
· 十六进制,ASCII字符0...9,A...F
· 消息中的每个ASCII字符都是一个十六进制字符组成
每个字节的位
· 1个起始位
· 7个数据位,最小的有效位先发送
· 1个奇偶校验位,无校验则无
· 1个停止位(有校验时),2个Bit(无校验时)
错误检测域
· LRC(纵向冗长检测)
2、RTU模式
当控制器设为在Modbus网络上以RTU(远程终端单元)模式通信,在消息中的每个8Bit字节包含两个4Bit的十六进制字符。这种方式的主要优点是:在同样的波特率下,可比ASCII方式传送更多的数据。
代码系统
· 8位二进制,十六进制数0...9,A...F
· 消息中的每个8位域都是一个两个十六进制字符组成
· 每个字节的位
· 1个起始位
· 8个数据位,最小的有效位先发送
· 1个奇偶校验位,无校验则无
· 1个停止位(有校验时),2个Bit(无校验时)
错误检测域
· CRC(循环冗长检测)
三、Modbus消息帧
两种传输模式中(ASCII或RTU),传输设备以将Modbus消息转为有起点和终点的帧,这就允许接收的设备在消息起始处开始工作,读地址分配信息,判断哪一个设备被选中(广播方式则传给所有设备),判知何时信息已完成。部分的消息也能侦测到并且错误能设置为返回结果。
1、ASCII帧
使用ASCII模式,消息以冒号(:)字符(ASCII码 3AH)开始,以回车换行符结束(ASCII码 0DH,0AH)。
其它域可以使用的传输字符是十六进制的0...9,A...F。网络上的设备不断侦测“:”字符,当有一个冒号接收到时,每个设备都解码下个域(地址域)来判断是否发给自己的。
消息中字符间发送的时间间隔最长不能超过1秒,否则接收的设备将认为传输错误。一个典型消息帧如下所示:
起始位
设备地址
功能代码
数据
LRC校验
结束符
1个字符
2个字符
2个字符
n个字符
2个字符
2个字符
图2 ASCII消息帧
2、RTU帧
使用RTU模式,消息发送至少要以3.5个字符时间的停顿间隔开始。在网络波特率下多样的字符时间,这是最容易实现的(如下图的T1-T2-T3-T4所示)。传输的第一个域是设备地址。可以使用的传输字符是十六进制的0...9,A...F。网络设备不断侦测网络总线,包括停顿间隔时间内。当第一个域(地址域)接收到,每个设备都进行解码以判断是否发往自己的。在最后一个传输字符之后,一个至少3.5个字符时间的停顿标定了消息的结束。一个新的消息可在此停顿后开始。
整个消息帧必须作为一连续的流转输。如果在帧完成之前有超过1.5个字符时间的停顿时间,接收设备将刷新不完整的消息并假定下一字节是一个新消息的地址域。同样地,如果一个新消息在小于3.5个字符时间内接着前个消息开始,接收的设备将认为它是前一消息的延续。这将导致一个错误,因为在最后的CRC域的值不可能是正确的。一典型的消息帧如下所示:
起始位
设备地址
功能代码
数据
CRC校验
结束符
T1-T2-T3-T4
8Bit
8Bit
n个8Bit
16Bit
T1-T2-T3-T4
图3 RTU消息帧
3、地址域
消息帧的地址域包含两个字符(ASCII)或8Bit(RTU)。可能的从设备地址是0...247 (十进制)。单个设备的地址范围是1...247。主设备通过将要联络的从设备的地址放入消息中的地址域来选通从设备。当从设备发送回应消息时,它把自己的地址放入回应的地址域中,以便主设备知道是哪一个设备作出回应。
地址0是用作广播地址,以使所有的从设备都能认识。当Modbus协议用于更高水准的网络,广播可能不允许或以其它方式代替。
4、如何处理功能域
消息帧中的功能代码域包含了两个字符(ASCII)或8Bits(RTU)。可能的代码范围是十进制的1...255。当然,有些代码是适用于所有控制器,有此是应用于某种控制器,还有些保留以备后用。
当消息从主设备发往从设备时,功能代码域将告之从设备需要执行哪些行为。例如去读取输入的开关状态,读一组寄存器的数据内容,读从设备的诊断状态,允许调入、记录、校验在从设备中的程序等。
当从设备回应时,它使用功能代码域来指示是正常回应(无误)还是有某种错误发生(称作异议回应)。对正常回应,从设备仅回应相应的功能代码。对异议回应,从设备返回一等同于正常代码的代码,但最重要的位置为逻辑1。
例如:一从主设备发往从设备的消息要求读一组保持寄存器,将产生如下功能代码:
0 0 0 0 0 0 1 1 (十六进制03H)
对正常回应,从设备仅回应同样的功能代码。对异议回应,它返回:
1 0 0 0 0 0 1 1 (十六进制83H)
除功能代码因异议错误作了修改外,从设备将一独特的代码放到回应消息的数据域中,这能告诉主设备发生了什么错误。
主设备应用程序得到异议的回应后,典型的处理过程是重发消息,或者诊断发给从设备的消息并报告给操作员。
5、数据域
数据域是由两个十六进制数集合构成的,范围00...FF。根据网络传输模式,这可以是由一对ASCII字符组成或由一RTU字符组成。
从主设备发给从设备消息的数据域包含附加的信息:从设备必须用于进行执行由功能代码所定义的所为。这包括了象不连续的寄存器地址,要处理项的数目,域中实际数据字节数。
例如,如果主设备需要从设备读取一组保持寄存器(功能代码03),数据域指定了起始寄存器以及要读的寄存器数量。如果主设备写一组从设备的寄存器(功能代码10十六进制),数据域则指明了要写的起始寄存器以及要写的寄存器数量,数据域的数据字节数,要写入寄存器的数据。
如果没有错误发生,从从设备返回的数据域包含请求的数据。如果有错误发生,此域包含一异议代码,主设备应用程序可以用来判断采取下一步行动。
在某种消息中数据域可以是不存在的(0长度)。例如,主设备要求从设备回应通信事件记录(功能代码0B十六进制),从设备不需任何附加的信息。
6、错误检测域
标准的Modbus网络有两种错误检测方法。错误检测域的内容视所选的检测方法而定。
ASCII
当选用ASCII模式作字符帧,错误检测域包含两个ASCII字符。这是使用LRC(纵向冗长检测)方法对消息内容计算得出的,不包括开始的冒号符及回车换行符。LRC字符附加在回车换行符前面。
RTU
当选用RTU模式作字符帧,错误检测域包含一16Bits值(用两个8位的字符来实现)。错误检测域的内容是通过对消息内容进行循环冗长检测方法得出的。CRC域附加在消息的最后,添加时先是低字节然后是高字节。故CRC的高位字节是发送消息的最后一个字节。
7、字符的连续传输
当消息在标准的Modbus系列网络传输时,每个字符或字节以如下方式发送(从左到右):
最低有效位...最高有效位
❻ 51单片机C语言怎么写Modbus通信程序
Modbus通信程序就是串口,只是比串口复杂点而已
❼ 01 03 02 00 00 B8 44modbus用C语言怎么编写
你说的MODBUS指令是错误的,MODBUS指令至少八字节,一字节设备ID,一字节指令码,两字节偏移量,两字节寄存器个数,两字节CRC16,写指令还需要加上若干字节的写入数据。C语言描述MODBUS指令,只需要声明一个字节数组即可,数组长度等于指令字节数量,然后将指令的各个字节数值依次写入到数组,然后再将这个数组发送出去即可。
❽ modbus通讯协议在PLC上怎么使用,举个例子,详细点最好!
通常PLC的使用说明书上有通信协议的格式,大多采用Modbus协议,要例子可以用类似格西烽火之类的软件,自带了Modbus协议测试例子。
❾ 单片机MODBUS RTU 作主机C程序
modbus的基本部分有现成的,自己写也不难,一般03和06指令用的最多,基本就够了.比较难的是数据分包检测,这块得根据你的mcu具体来做.
关于指令中的处理这部分只能自己写了.
❿ 用c语言编写modbus程序
#ifdef MODBUS
//
//******************************************************************************
// CRC 16 Data Table
// *****************
const unsigned int crc_tbl[256]={
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241,
0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0xC481, 0x0440,
0xCC01, 0x0CC0, 0x0D80, 0xCD41, 0x0F00, 0xCFC1, 0xCE81, 0x0E40,
0x0A00, 0xCAC1, 0xCB81, 0x0B40, 0xC901, 0x09C0, 0x0880, 0xC841,
0xD801, 0x18C0, 0x1980, 0xD941, 0x1B00, 0xDBC1, 0xDA81, 0x1A40,
0x1E00, 0xDEC1, 0xDF81, 0x1F40, 0xDD01, 0x1DC0, 0x1C80, 0xDC41,
0x1400, 0xD4C1, 0xD581, 0x1540, 0xD701, 0x17C0, 0x1680, 0xD641,
0xD201, 0x12C0, 0x1380, 0xD341, 0x1100, 0xD1C1, 0xD081, 0x1040,
0xF001, 0x30C0, 0x3180, 0xF141, 0x3300, 0xF3C1, 0xF281, 0x3240,
0x3600, 0xF6C1, 0xF781, 0x3740, 0xF501, 0x35C0, 0x3480, 0xF441,
0x3C00, 0xFCC1, 0xFD81, 0x3D40, 0xFF01, 0x3FC0, 0x3E80, 0xFE41,
0xFA01, 0x3AC0, 0x3B80, 0xFB41, 0x3900, 0xF9C1, 0xF881, 0x3840,
0x2800, 0xE8C1, 0xE981, 0x2940, 0xEB01, 0x2BC0, 0x2A80, 0xEA41,
0xEE01, 0x2EC0, 0x2F80, 0xEF41, 0x2D00, 0xEDC1, 0xEC81, 0x2C40,
0xE401, 0x24C0, 0x2580, 0xE541, 0x2700, 0xE7C1, 0xE681, 0x2640,
0x2200, 0xE2C1, 0xE381, 0x2340, 0xE101, 0x21C0, 0x2080, 0xE041,
0xA001, 0x60C0, 0x6180, 0xA141, 0x6300, 0xA3C1, 0xA281, 0x6240,
0x6600, 0xA6C1, 0xA781, 0x6740, 0xA501, 0x65C0, 0x6480, 0xA441,
0x6C00, 0xACC1, 0xAD81, 0x6D40, 0xAF01, 0x6FC0, 0x6E80, 0xAE41,
0xAA01, 0x6AC0, 0x6B80, 0xAB41, 0x6900, 0xA9C1, 0xA881, 0x6840,
0x7800, 0xB8C1, 0xb981, 0x7940, 0xBB01, 0x7BC0, 0x7A80, 0xBA41,
0xBE01, 0x7EC0, 0x7F80, 0xBF41, 0x7D00, 0xBDC1, 0xBC81, 0x7C40,
0xB401, 0x74C0, 0x7580, 0xB541, 0x7700, 0xB7C1, 0xB681, 0x7640,
0x7200, 0xB2C1, 0xB381, 0x7340, 0xB101, 0x71C0, 0x7080, 0xB041,
0x5000, 0x90C1, 0x9181, 0x5140, 0x9301, 0x53C0, 0x5280, 0x9241,
0x9601, 0x56C0, 0x5780, 0x9741, 0x5500, 0x95C1, 0x9481, 0x5440,
0x9C01, 0x5CC0, 0x5D80, 0x9D41, 0x5F00, 0x9FC1, 0x9E81, 0x5E40,
0x5A00, 0x9AC1, 0x9B81, 0x5B40, 0x9901, 0x59C0, 0x5880, 0x9841,
0x8801, 0x48C0, 0x4980, 0x8941, 0x4B00, 0x8BC1, 0x8A81, 0x4A40,
0x4E00, 0x8EC1, 0x8F81, 0x4F40, 0x8D01, 0x4DC0, 0x4C80, 0x8C41,
0x4400, 0x84C1, 0x8581, 0x4540, 0x8701, 0x47C0, 0x4680, 0x8641,
0x8201, 0x42C0, 0x4380, 0x8341, 0x4100, 0x81C1, 0x8081, 0x4040};
//#pragma end_abs_address
//******************************************************************************
//
#define DEFAULT_ADDRESS 1 // all slaves start with this Modbus address
// communication commands:
//#define CHOOSE_SLOT 0x80
//#define POLL_SLOT 0x81
//#define POLL_ACK 0x82
// positions in a Modbus packet
#define ADDR 0
#define FCN 1
#define REGHI 2
#define REGLO 3
#define NUMREGSHI 4
#define NUMREGSLO 5
#define OUTBYTES 2
// Modbus exception codes
#define FCN_NOT_SUPPORTED 1 // a Modbus function code we can't
handle
#define BAD_ADDR_OR_CMD 2 // a Modbus "register"
(command or address to us) we don't know
#define BAD_COUNT 3 // num regs != num bytes
* 2
#define CMD_NOT_COMPLETE 4 // command didn't complete
successfully
// other defines
#define IN 0
#define OUT 1
//
// SLOT_NUMBER is the 2 byte device configuration
// the first byte is the ID
// the second byte is the transmission mode coded as follows:
// bit 0x01: 0=19200, 1=9600 baud
// bit 0x02: 0=even parity, 1=odd parity
// bit 0x04: 0=parity, 1=no parity
// bit 0x08: 0=1 stop bit, 1=2 stop bits
// if bit 0x04 is set and bit 0x08 is not set then it's 8
bit mode (vs 9 bit mode)
//
//unsigned char receiveBuffer[32] = {0}; // Reserve 32 bytes for packet.
unsigned char device_addr = DEFAULT_ADDRESS; // assigned device address - start
with disconnected
//unsigned char timeout_counter = 10;
//unsigned char timeout_ration = 10; // seconds, default
//unsigned char pkt_index = 0;
// return number of bytes in packet, not including crc
unsigned char MDB_get_length(unsigned char in_out, unsigned char* ptr)
{
if(comControlByte & 0x20)
return 6;
switch(*(ptr+FCN))
{
case 0x06: // write single reg
return 6;
case 0x03: // read multiple regs
if (in_out == IN) // incoming packet
return 6;
else
return *(ptr+OUTBYTES) + 3;
case 0x10: // write multiple regs
return (*(ptr+NUMREGSLO) << 1) + 7;
default: // assume error packet
return 3;
}
}
// calculate CRC16 on a packet
unsigned int MDB_crc_calc(unsigned char in_out, unsigned char* ptr)
{
unsigned char c1, c2;
unsigned int crc = 0xffff;
// initial value
unsigned char* ptr_pkt_hdr = ptr;
c2 = MDB_get_length(in_out,ptr);
for(c1=0; c1<c2; c1++)
crc = ((crc >> 8) & 0xFF) ^ crc_tbl[(crc ^ *ptr_pkt_hdr++) & 0xFF];
return crc;
}
// check crc on an incoming packet
unsigned char MDB_crc_check(unsigned char* ptr)
{
unsigned int i1;
unsigned char c1, c2, c3;
i1 = MDB_crc_calc(IN, ptr);
c1 = *(ptr+MDB_get_length(IN,ptr)+1); // msb of incoming crc
c2 = *(ptr+MDB_get_length(IN,ptr)); // lsb of
incoming crc
c3 = (i1 >> 8);
// msb of calculated crc
if((c2 == (i1 & 0x00FF)) && (c1 == c3)) // compare msb
& lsb
return 1;
else
return 0;
}
// send Modbus packets
void MDB_pkt_sender(unsigned char* ptr)
{
unsigned char idx, pkt_len;
unsigned int i1;
// append crc, lsb 1st
i1 = MDB_crc_calc(OUT,ptr);
pkt_len = MDB_get_length(OUT,ptr);
*(ptr+pkt_len++) = (unsigned char)i1; // lsb
*(ptr+pkt_len++) = (i1 >> 8); // msb
//SCI1C2 = 0x08; // transmit enable
//comLedOn();
PTGD |= 0x80;
for (idx = 0; idx < pkt_len; idx++)
{
while(!(SCI1S1 & 0x80)); // wait for tdre=1
i1 = SCI1S1;
SCI1D = *(ptr+idx);
}
while(!(SCI1S1 & 0x80));
while(!(SCI1S1 & 0x40));
//comLedOff();
PTGD &= 0x7f;
//SCI1C2 = 0x2c; // back to receive mode
}
// return a Modbus error packet
void MDB_error(unsigned char exp_code, unsigned char* ptr)
{
*(ptr+FCN) |= 0x80; // set error code
*(ptr+FCN+1) = exp_code; // set exception code
MDB_pkt_sender(ptr);
}
//
void MDB_read_data(unsigned char* ptr)
{
if(get_data((ptr+2), *(ptr+3)))
{
// get_data() sticks the length of the data in
receiveBuffer[2]
// receiveBuffer[3] & on will have actual data
// receiveBuffer[0] & receiveBuffer[1] unchanged
MDB_pkt_sender(ptr); // appends CRC before sending
}
else
MDB_error(BAD_ADDR_OR_CMD, ptr);
}
// handle data writes
void MDB_write_data(unsigned char* ptr)
{
if((*(ptr+5)<<1) == *(ptr+6))
{
switch(*(ptr+3))//receiveBuffer[3])
{
//case 0x18: // new timeout value
// timeout_ration = receiveBuffer[7];
// MDB_pkt_sender(); // echo
received command
// break;
//case 0x63: // lamp test
// clampTest = 40;
// MDB_pkt_sender(); // echo
received command
// break;
case ADDRESS:
//if(receiveBuffer[8] &&
(receiveBuffer[8] < 248)) // valid addresses
if(*(ptr+8) && (*(ptr+8) < 248))
{
//device_addr = *
(ptr+8); // not until reset
nonvolatile[0] = *(ptr+8);
// device ID
nonvolatile[1] = *(ptr+7);
// transmission mode
nonvolatile[2] =
~nonvolatile[0];
nonvolatile[3] =
~nonvolatile[1];
writeToNonvolatile
(SLOT_NUMBER, &nonvolatile[0]);
comControlByte |= 0x20;
MDB_pkt_sender(ptr);
comControlByte &= 0xdf;
}
else
MDB_error
(BAD_ADDR_OR_CMD, ptr);
break;
case INSTALLATION_DATE: // installation
date
readFromNonvolatile(DATE_DATA,
&nonvolatile[0]);
nonvolatile[4] = *
(ptr+7);//receiveBuffer[7];
nonvolatile[5] = *
(ptr+8);//receiveBuffer[8];
nonvolatile[6] = *
(ptr+9);//receiveBuffer[9];
nonvolatile[7] = *
(ptr+10);//receiveBuffer[10];
nonvolatile[12] = ~nonvolatile[4];
nonvolatile[13] = ~nonvolatile[5];
nonvolatile[14] = ~nonvolatile[6];
nonvolatile[15] = ~nonvolatile[7];
writeToNonvolatile(DATE_DATA,
&nonvolatile[0]);
comControlByte |= 0x20;
MDB_pkt_sender(ptr); // echo
received command
comControlByte &= 0xdf;
break;
default:
MDB_error(BAD_ADDR_OR_CMD, ptr);
break;
}
}
else
MDB_error(BAD_COUNT, ptr);
}
//
void MDB_parse(char *bufPtr)
{
unsigned char i = 0;
if(MDB_crc_check(bufPtr))
{
if(*(bufPtr+ADDR) == device_addr)
{
switch(*(bufPtr+FCN))
{
case 0x03: // modbus read multiple
regs
MDB_read_data(bufPtr);
break;
case 0x10: // modbus write multiple
regs
MDB_write_data(bufPtr);
break;
default: // modbus function not
supported
MDB_error
(FCN_NOT_SUPPORTED, bufPtr);
break;
}
}
}
}