导航:首页 > 编程语言 > cart决策树python实现

cart决策树python实现

发布时间:2022-08-21 03:38:24

① 基于python的决策树能进行多分类吗

决策树主文件 tree.py

[python] view plain

② python中的sklearn中决策树使用的是哪一种算法

要弄清楚这个问题,首先要弄懂决策树三大流行算法ID3、C4.5和CART的原理,以及sklearn框架下DecisionTreeClassifier的帮助文档。
3个算法的主要区别在于度量信息方法、选择节点特征还有分支数量的不同。
ID3,采用熵(entropy)来度量信息不确定度,选择“信息增益”最大的作为节点特征,它是多叉树,即一个节点可以有多个分支。
C4.5,同样采用熵(entropy)来度量信息不确定度,选择“信息增益比”最大的作为节点特征,同样是多叉树,即一个节点可以有多个分支。
CART,采用基尼指数(Gini index)来度量信息不纯度,选择基尼指数最小的作为节点特征,它是二叉树,即一个节点只分两支。
然后你认真阅读sklearn的DecisionTreeClassifier的帮助文档,可以发现,度量信息的方法默认是Gini,但可以改成entropy,请按需选择;构建的树是二叉树;可以通过设置max_deepth、max_leaf等来实现“剪枝”,这是根据CART的损失函数减少的理论进行的。
所以总结说,如果信息度量方法按照默认的设置,那么sklearn所用的决策树分类器就是CART,如果改成了entropy,那么只是使用了别的度量方法而已。其实两者差不多。

③ python决策树怎么验证测试集

不属于!决策树算法主要包括id3,c45,cart等算法,生成树形决策树,而朴素贝叶斯是利用贝叶斯定律,根据先验概率求算后验概率。

④ 用python实现红酒数据集的ID3,C4.5和CART算法

ID3算法介绍
ID3算法全称为迭代二叉树3代算法(Iterative Dichotomiser 3)
该算法要先进行特征选择,再生成决策树,其中特征选择是基于“信息增益”最大的原则进行的。
但由于决策树完全基于训练集生成的,有可能对训练集过于“依赖”,即产生过拟合现象。因此在生成决策树后,需要对决策树进行剪枝。剪枝有两种形式,分别为前剪枝(Pre-Pruning)和后剪枝(Post-Pruning),一般采用后剪枝。
信息熵、条件熵和信息增益
信息熵:来自于香农定理,表示信息集合所含信息的平均不确定性。信息熵越大,表示不确定性越大,所含的信息量也就越大。
设x 1 , x 2 , x 3 , . . . x n {x_1, x_2, x_3, ...x_n}x
1

,x
2

,x
3

,...x
n

为信息集合X的n个取值,则x i x_ix
i

的概率:
P ( X = i ) = p i , i = 1 , 2 , 3 , . . . , n P(X=i) = p_i, i=1,2,3,...,n
P(X=i)=p
i

,i=1,2,3,...,n

信息集合X的信息熵为:
H ( X ) = − ∑ i = 1 n p i log ⁡ p i H(X) =- \sum_{i=1}^{n}{p_i}\log{p_i}
H(X)=−
i=1

n

p
i

logp
i

条件熵:指已知某个随机变量的情况下,信息集合的信息熵。
设信息集合X中有y 1 , y 2 , y 3 , . . . y m {y_1, y_2, y_3, ...y_m}y
1

,y
2

,y
3

,...y
m

组成的随机变量集合Y,则随机变量(X,Y)的联合概率分布为
P ( x = i , y = j ) = p i j P(x=i,y=j) = p_{ij}
P(x=i,y=j)=p
ij

条件熵:
H ( X ∣ Y ) = ∑ j = 1 m p ( y j ) H ( X ∣ y j ) H(X|Y) = \sum_{j=1}^m{p(y_j)H(X|y_j)}
H(X∣Y)=
j=1

m

p(y
j

)H(X∣y
j

)

H ( X ∣ y j ) = − ∑ j = 1 m p ( y j ) ∑ i = 1 n p ( x i ∣ y j ) log ⁡ p ( x i ∣ y j ) H(X|y_j) = - \sum_{j=1}^m{p(y_j)}\sum_{i=1}^n{p(x_i|y_j)}\log{p(x_i|y_j)}
H(X∣y
j

)=−
j=1

m

p(y
j

)
i=1

n

p(x
i

∣y
j

)logp(x
i

∣y
j

)
和贝叶斯公式:
p ( x i y j ) = p ( x i ∣ y j ) p ( y j ) p(x_iy_j) = p(x_i|y_j)p(y_j)
p(x
i

y
j

)=p(x
i

∣y
j

)p(y
j

)
可以化简条件熵的计算公式为:
H ( X ∣ Y ) = ∑ j = 1 m ∑ i = 1 n p ( x i , y j ) log ⁡ p ( x i ) p ( x i , y j ) H(X|Y) = \sum_{j=1}^m \sum_{i=1}^n{p(x_i, y_j)\log\frac{p(x_i)}{p(x_i, y_j)}}
H(X∣Y)=
j=1

m

i=1

n

p(x
i

,y
j

)log
p(x
i

,y
j

)
p(x
i

)

信息增益:信息熵-条件熵,用于衡量在知道已知随机变量后,信息不确定性减小越大。
d ( X , Y ) = H ( X ) − H ( X ∣ Y ) d(X,Y) = H(X) - H(X|Y)
d(X,Y)=H(X)−H(X∣Y)

python代码实现
import numpy as np
import math

def calShannonEnt(dataSet):
""" 计算信息熵 """
labelCountDict = {}
for d in dataSet:
label = d[-1]
if label not in labelCountDict.keys():
labelCountDict[label] = 1
else:
labelCountDict[label] += 1
entropy = 0.0
for l, c in labelCountDict.items():
p = 1.0 * c / len(dataSet)
entropy -= p * math.log(p, 2)
return entropy

def filterSubDataSet(dataSet, colIndex, value):
"""返回colIndex特征列label等于value,并且过滤掉改特征列的数据集"""
subDataSetList = []
for r in dataSet:
if r[colIndex] == value:
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
subDataSetList.append(newR)
return np.array(subDataSetList)

def chooseFeature(dataSet):
""" 通过计算信息增益选择最合适的特征"""
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)
bestInfoGain = 0.0
bestFeatureIndex = -1
for i in range(featureNum):
uniqueValues = np.unique(dataSet[:, i])
condition_entropy = 0.0

for v in uniqueValues: #计算条件熵
subDataSet = filterSubDataSet(dataSet, i, v)
p = 1.0 * len(subDataSet) / len(dataSet)
condition_entropy += p * calShannonEnt(subDataSet)
infoGain = entropy - condition_entropy #计算信息增益

if infoGain >= bestInfoGain: #选择最大信息增益
bestInfoGain = infoGain
bestFeatureIndex = i
return bestFeatureIndex

def creatDecisionTree(dataSet, featNames):
""" 通过训练集生成决策树 """
featureName = featNames[:] # 拷贝featNames,此处不能直接用赋值操作,否则新变量会指向旧变量的地址
classList = list(dataSet[:, -1])
if len(set(classList)) == 1: # 只有一个类别
return classList[0]
if dataSet.shape[1] == 1: #当所有特征属性都利用完仍然无法判断样本属于哪一类,此时归为该数据集中数量最多的那一类
return max(set(classList), key=classList.count)

bestFeatureIndex = chooseFeature(dataSet) #选择特征
bestFeatureName = featNames[bestFeatureIndex]
del featureName[bestFeatureIndex] #移除已选特征列
decisionTree = {bestFeatureName: {}}

featureValueUnique = sorted(set(dataSet[:, bestFeatureIndex])) #已选特征列所包含的类别, 通过递归生成决策树
for v in featureValueUnique:
FeatureName = featureName[:]
subDataSet = filterSubDataSet(dataSet, bestFeatureIndex, v)
decisionTree[bestFeatureName][v] = creatDecisionTree(subDataSet, FeatureName)
return decisionTree

def classify(decisionTree, featnames, featList):
""" 使用训练所得的决策树进行分类 """
classLabel = None
root = decisionTree.keys()[0]
firstGenDict = decisionTree[root]
featIndex = featnames.index(root)
for k in firstGenDict.keys():
if featList[featIndex] == k:
if isinstance(firstGenDict[k], dict): #若子节点仍是树,则递归查找
classLabel = classify(firstGenDict[k], featnames, featList)
else:
classLabel = firstGenDict[k]
return classLabel
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
下面用鸢尾花数据集对该算法进行测试。由于ID3算法只能用于标称型数据,因此用在对连续型的数值数据上时,还需要对数据进行离散化,离散化的方法稍后说明,此处为了简化,先使用每一种特征所有连续性数值的中值作为分界点,小于中值的标记为1,大于中值的标记为0。训练1000次,统计准确率均值。

from sklearn import datasets
from sklearn.model_selection import train_test_split

iris = datasets.load_iris()
data = np.c_[iris.data, iris.target]

scoreL = []
for i in range(1000): #对该过程进行10000次
trainData, testData = train_test_split(data) #区分测试集和训练集

featNames = iris.feature_names[:]
for i in range(trainData.shape[1] - 1): #对训练集每个特征,以中值为分界点进行离散化
splitPoint = np.mean(trainData[:, i])
featNames[i] = featNames[i]+'<='+'{:.3f}'.format(splitPoint)
trainData[:, i] = [1 if x <= splitPoint else 0 for x in trainData[:, i]]
testData[:, i] = [1 if x <= splitPoint else 0 for x in testData[:, i]]

decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))
print 'score: ', np.mean(scoreL)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
输出结果为:score: 0.7335,即准确率有73%。每次训练和预测的准确率分布如下:

数据离散化
然而,在上例中对特征值离散化的划分点实际上过于“野蛮”,此处介绍一种通过信息增益最大的标准来对数据进行离散化。原理很简单,当信息增益最大时,说明用该点划分能最大程度降低数据集的不确定性。
具体步骤如下:

对每个特征所包含的数值型特征值排序
对相邻两个特征值取均值,这些均值就是待选的划分点
用每一个待选点把该特征的特征值划分成两类,小于该特征点置为1, 大于该特征点置为0,计算此时的条件熵,并计算出信息增益
选择信息使信息增益最大的划分点进行特征离散化
实现代码如下:

def filterRawData(dataSet, colIndex, value, tag):
""" 用于把每个特征的连续值按照区分点分成两类,加入tag参数,可用于标记筛选的是哪一部分数据"""
filterDataList = []
for r in dataSet:
if (tag and r[colIndex] <= value) or ((not tag) and r[colIndex] > value):
newR = r[:colIndex]
newR = np.append(newR, (r[colIndex + 1:]))
filterDataList.append(newR)
return np.array(filterDataList)

def dataDiscretization(dataSet, featName):
""" 对数据每个特征的数值型特征值进行离散化 """
featureNum = dataSet.shape[1] - 1
entropy = calShannonEnt(dataSet)

for featIndex in range(featureNum): #对于每一个特征
uniqueValues = sorted(np.unique(dataSet[:, featIndex]))
meanPoint = []

for i in range(len(uniqueValues) - 1): # 求出相邻两个值的平均值
meanPoint.append(float(uniqueValues[i+1] + uniqueValues[i]) / 2.0)
bestInfoGain = 0.0
bestMeanPoint = -1
for mp in meanPoint: #对于每个划分点
subEntropy = 0.0 #计算该划分点的信息熵
for tag in range(2): #分别划分为两类
subDataSet = filterRawData(dataSet, featIndex, mp, tag)
p = 1.0 * len(subDataSet) / len(dataSet)
subEntropy += p * calShannonEnt(subDataSet)

## 计算信息增益
infoGain = entropy - subEntropy
## 选择最大信息增益
if infoGain >= bestInfoGain:
bestInfoGain = infoGain
bestMeanPoint = mp
featName[featIndex] = featName[featIndex] + "<=" + "{:.3f}".format(bestMeanPoint)
dataSet[:, featIndex] = [1 if x <= bestMeanPoint else 0 for x in dataSet[:, featIndex]]
return dataSet, featName
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
重新对数据进行离散化,并重复该步骤1000次,同时用sklearn中的DecisionTreeClassifier对相同数据进行分类,分别统计平均准确率。运行代码如下:

from sklearn.tree import DecisionTreeClassifier
import matplotlib.pyplot as plt
scoreL = []
scoreL_sk = []
for i in range(1000): #对该过程进行1000次
featNames = iris.feature_names[:]
trainData, testData = train_test_split(data) #区分测试集和训练集
trainData_tmp = .(trainData)
testData_tmp = .(testData)
discritizationData, discritizationFeatName= dataDiscretization(trainData, featNames) #根据信息增益离散化
for i in range(testData.shape[1]-1): #根据测试集的区分点离散化训练集
splitPoint = float(discritizationFeatName[i].split('<=')[-1])
testData[:, i] = [1 if x<=splitPoint else 0 for x in testData[:, i]]
decisionTree = creatDecisionTree(trainData, featNames)
classifyLable = [classify(decisionTree, featNames, td) for td in testData]
scoreL.append(1.0 * sum(classifyLable == testData[:, -1]) / len(classifyLable))

clf = DecisionTreeClassifier('entropy')
clf.fit(trainData[:, :-1], trainData[:, -1])
clf.predict(testData[:, :-1])
scoreL_sk.append(clf.score(testData[:, :-1], testData[:, -1]))

print 'score: ', np.mean(scoreL)
print 'score-sk: ', np.mean(scoreL_sk)
fig = plt.figure(figsize=(10, 4))
plt.subplot(1,2,1)
pd.Series(scoreL).hist(grid=False, bins=10)
plt.subplot(1,2,2)
pd.Series(scoreL_sk).hist(grid=False, bins=10)
plt.show()
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
两者准确率分别为:
score: 0.7037894736842105
score-sk: 0.7044736842105263

准确率分布如下:

两者的结果非常一样。
(但是。。为什么根据信息熵离散化得到的准确率比直接用均值离散化的准确率还要低啊??哇的哭出声。。)

最后一次决策树图形如下:

决策树剪枝
由于决策树是完全依照训练集生成的,有可能会有过拟合现象,因此一般会对生成的决策树进行剪枝。常用的是通过决策树损失函数剪枝,决策树损失函数表示为:
C a ( T ) = ∑ t = 1 T N t H t ( T ) + α ∣ T ∣ C_a(T) = \sum_{t=1}^TN_tH_t(T) +\alpha|T|
C
a

(T)=
t=1

T

N
t

H
t

(T)+α∣T∣

其中,H t ( T ) H_t(T)H
t

(T)表示叶子节点t的熵值,T表示决策树的深度。前项∑ t = 1 T N t H t ( T ) \sum_{t=1}^TN_tH_t(T)∑
t=1
T

N
t

H
t

(T)是决策树的经验损失函数当随着T的增加,该节点被不停的划分的时候,熵值可以达到最小,然而T的增加会使后项的值增大。决策树损失函数要做的就是在两者之间进行平衡,使得该值最小。
对于决策树损失函数的理解,如何理解决策树的损失函数? - 陶轻松的回答 - 知乎这个回答写得挺好,可以按照答主的思路理解一下

C4.5算法
ID3算法通过信息增益来进行特征选择会有一个比较明显的缺点:即在选择的过程中该算法会优先选择类别较多的属性(这些属性的不确定性小,条件熵小,因此信息增益会大),另外,ID3算法无法解决当每个特征属性中每个分类都只有一个样本的情况(此时每个属性的条件熵都为0)。
C4.5算法ID3算法的改进,它不是依据信息增益进行特征选择,而是依据信息增益率,它添加了特征分裂信息作为惩罚项。定义分裂信息:
S p l i t I n f o ( X , Y ) = − ∑ i n ∣ X i ∣ ∣ X ∣ log ⁡ ∣ X i ∣ ∣ X ∣ SplitInfo(X, Y) =-\sum_i^n\frac{|X_i|}{|X|}\log\frac{|X_i|}{|X|}
SplitInfo(X,Y)=−
i

n

∣X∣
∣X
i



log
∣X∣
∣X
i



则信息增益率为:
G a i n R a t i o ( X , Y ) = d ( X , Y ) S p l i t I n f o ( X , Y ) GainRatio(X,Y)=\frac{d(X,Y)}{SplitInfo(X, Y)}
GainRatio(X,Y)=
SplitInfo(X,Y)
d(X,Y)

关于ID3和C4.5算法
在学习分类回归决策树算法时,看了不少的资料和博客。关于这两个算法,ID3算法是最早的分类算法,这个算法刚出生的时候其实带有很多缺陷:

无法处理连续性特征数据
特征选取会倾向于分类较多的特征
没有解决过拟合的问题
没有解决缺失值的问题
即该算法出生时是没有带有连续特征离散化、剪枝等步骤的。C4.5作为ID3的改进版本弥补列ID3算法不少的缺陷:

通过信息最大增益的标准离散化连续的特征数据
在选择特征是标准从“最大信息增益”改为“最大信息增益率”
通过加入正则项系数对决策树进行剪枝
对缺失值的处理体现在两个方面:特征选择和生成决策树。初始条件下对每个样本的权重置为1。
特征选择:在选取最优特征时,计算出每个特征的信息增益后,需要乘以一个**“非缺失值样本权重占总样本权重的比例”**作为系数来对比每个特征信息增益的大小
生成决策树:在生成决策树时,对于缺失的样本我们按照一定比例把它归属到每个特征值中,比例为该特征每一个特征值占非缺失数据的比重
关于C4.5和CART回归树
作为ID3的改进版本,C4.5克服了许多缺陷,但是它自身还是存在不少问题:

C4.5的熵运算中涉及了对数运算,在数据量大的时候效率非常低。
C4.5的剪枝过于简单
C4.5只能用于分类运算不能用于回归
当特征有多个特征值是C4.5生成多叉树会使树的深度加深
————————————————
版权声明:本文为CSDN博主“Sarah Huang”的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weixin_44794704/article/details/89406612

⑤ python 怎么做决策树模型 案例

Original values: (1, 'abc', 2.7)
Format string : I3sf
Uses : 12 bytes
Packed Value : 0100000061626300cdcc2c40
Unpacked Type : <type 'tuple'> Value: (1, 'abc', 2.700000047683716)

⑥ python 决策树算法支持交互方式么

决策树是用样本的属性作为结点,用属性的取值作为分支的树结构。
决策树的根结点是所有样本中信息量最大的属性
树的中间结点是该结点为根的子树所包含的样本子集中信息量最大的属性。

⑦ python sklearn 如何用测试集数据画出决策树(非开发样本)

#coding=utf-8

from sklearn.datasets import load_iris
from sklearn import tree

iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)

from sklearn.externals.six import StringIO
import pydot

dot_data = StringIO()
tree.export_graphviz(clf, out_file=dot_data)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph[0].write_dot('iris_simple.dot')
graph[0].write_png('iris_simple.png')

⑧ 决策树之ID3算法及其Python实现

决策树之ID3算法及其Python实现

1. 决策树背景知识
??决策树是数据挖掘中最重要且最常用的方法之一,主要应用于数据挖掘中的分类和预测。决策树是知识的一种呈现方式,决策树中从顶点到每个结点的路径都是一条分类规则。决策树算法最先基于信息论发展起来,经过几十年发展,目前常用的算法有:ID3、C4.5、CART算法等。
2. 决策树一般构建过程
??构建决策树是一个自顶向下的过程。树的生长过程是一个不断把数据进行切分细分的过程,每一次切分都会产生一个数据子集对应的节点。从包含所有数据的根节点开始,根据选取分裂属性的属性值把训练集划分成不同的数据子集,生成由每个训练数据子集对应新的非叶子节点。对生成的非叶子节点再重复以上过程,直到满足特定的终止条件,停止对数据子集划分,生成数据子集对应的叶子节点,即所需类别。测试集在决策树构建完成后检验其性能。如果性能不达标,我们需要对决策树算法进行改善,直到达到预期的性能指标。
??注:分裂属性的选取是决策树生产过程中的关键,它决定了生成的决策树的性能、结构。分裂属性选择的评判标准是决策树算法之间的根本区别。
3. ID3算法分裂属性的选择——信息增益
??属性的选择是决策树算法中的核心。是对决策树的结构、性能起到决定性的作用。ID3算法基于信息增益的分裂属性选择。基于信息增益的属性选择是指以信息熵的下降速度作为选择属性的方法。它以的信息论为基础,选择具有最高信息增益的属性作为当前节点的分裂属性。选择该属性作为分裂属性后,使得分裂后的样本的信息量最大,不确定性最小,即熵最小。
??信息增益的定义为变化前后熵的差值,而熵的定义为信息的期望值,因此在了解熵和信息增益之前,我们需要了解信息的定义。
??信息:分类标签xi 在样本集 S 中出现的频率记为 p(xi),则 xi 的信息定义为:?log2p(xi) 。
??分裂之前样本集的熵:E(S)=?∑Ni=1p(xi)log2p(xi),其中 N 为分类标签的个数。
??通过属性A分裂之后样本集的熵:EA(S)=?∑mj=1|Sj||S|E(Sj),其中 m 代表原始样本集通过属性A的属性值划分为 m 个子样本集,|Sj| 表示第j个子样本集中样本数量,|S| 表示分裂之前数据集中样本总数量。
??通过属性A分裂之后样本集的信息增益:InfoGain(S,A)=E(S)?EA(S)
??注:分裂属性的选择标准为:分裂前后信息增益越大越好,即分裂后的熵越小越好。
4. ID3算法
??ID3算法是一种基于信息增益属性选择的决策树学习方法。核心思想是:通过计算属性的信息增益来选择决策树各级节点上的分裂属性,使得在每一个非叶子节点进行测试时,获得关于被测试样本最大的类别信息。基本方法是:计算所有的属性,选择信息增益最大的属性分裂产生决策树节点,基于该属性的不同属性值建立各分支,再对各分支的子集递归调用该方法建立子节点的分支,直到所有子集仅包括同一类别或没有可分裂的属性为止。由此得到一棵决策树,可用来对新样本数据进行分类。
ID3算法流程:
(1) 创建一个初始节点。如果该节点中的样本都在同一类别,则算法终止,把该节点标记为叶节点,并用该类别标记。
(2) 否则,依据算法选取信息增益最大的属性,该属性作为该节点的分裂属性。
(3) 对该分裂属性中的每一个值,延伸相应的一个分支,并依据属性值划分样本。
(4) 使用同样的过程,自顶向下的递归,直到满足下面三个条件中的一个时就停止递归。
??A、待分裂节点的所有样本同属于一类。
??B、训练样本集中所有样本均完成分类。
??C、所有属性均被作为分裂属性执行一次。若此时,叶子结点中仍有属于不同类别的样本时,选取叶子结点中包含样本最多的类别,作为该叶子结点的分类。
ID3算法优缺点分析
优点:构建决策树的速度比较快,算法实现简单,生成的规则容易理解。
缺点:在属性选择时,倾向于选择那些拥有多个属性值的属性作为分裂属性,而这些属性不一定是最佳分裂属性;不能处理属性值连续的属性;无修剪过程,无法对决策树进行优化,生成的决策树可能存在过度拟合的情况。

⑨ 怎么用熵决策树模型优化 剪枝函数python

一般决策树学习算法是一个递归地选择最优特征并根据特征对训练数据进行分割,使每个子数据集都有一个最好的分类的过程。算法包括:
step1:特征选择(根据熵或基尼指数选择特征)
step2:决策树生成(有ID3、C4.5、CART算法等)
step3:剪枝(防止过拟合)!

⑩ 如何将python生成的决策树利用graphviz画出来

#这里有一个示例,你可以看一下。
#http://scikit-learn.org/stable/moles/tree.html
>>>fromIPython.displayimportImage
>>>dot_data=tree.export_graphviz(clf,out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True,rounded=True,
special_characters=True)
>>>graph=pydotplus.graph_from_dot_data(dot_data)
>>>Image(graph.create_png())

阅读全文

与cart决策树python实现相关的资料

热点内容
爱上北斗星男友在哪个app上看 浏览:413
主力散户派发源码 浏览:663
linux如何修复服务器时间 浏览:55
荣县优途网约车app叫什么 浏览:472
百姓网app截图是什么意思 浏览:222
php如何嵌入html 浏览:809
解压专家怎么传输 浏览:743
如何共享服务器的网络连接 浏览:132
程序员简易表白代码 浏览:166
什么是无线加密狗 浏览:62
国家反诈中心app为什么会弹出 浏览:67
cad压缩图打印 浏览:102
网页打开速度与服务器有什么关系 浏览:863
android开发技术文档 浏览:65
32单片机写程序 浏览:51
三星双清无命令 浏览:838
汉寿小程序源码 浏览:344
易助erp云服务器 浏览:533
修改本地账户管理员文件夹 浏览:419
python爬虫工程师招聘 浏览:285