㈠ python爬虫可以爬取什么
Python爬虫可以爬取的东西有很多,Python爬虫怎么学?简单的分析下:
如果你仔细观察,就不难发现,懂爬虫、学习爬虫的人越来越多,一方面,互联网可以获取的数据越来越多,另一方面,像 Python这样的编程语言提供越来越多的优秀工具,让爬虫变得简单、容易上手。
利用爬虫我们可以获取大量的价值数据,从而获得感性认识中不能得到的信息,比如:
知乎:爬取优质答案,为你筛选出各话题下最优质的内容。
淘宝、京东:抓取商品、评论及销量数据,对各种商品及用户的消费场景进行分析。
安居客、链家:抓取房产买卖及租售信息,分析房价变化趋势、做不同区域的房价分析。
拉勾网、智联:爬取各类职位信息,分析各行业人才需求情况及薪资水平。
雪球网:抓取雪球高回报用户的行为,对股票市场进行分析和预测。
爬虫是入门Python最好的方式,没有之一。Python有很多应用的方向,比如后台开发、web开发、科学计算等等,但爬虫对于初学者而言更友好,原理简单,几行代码就能实现基本的爬虫,学习的过程更加平滑,你能体会更大的成就感。
掌握基本的爬虫后,你再去学习Python数据分析、web开发甚至机器学习,都会更得心应手。因为这个过程中,Python基本语法、库的使用,以及如何查找文档你都非常熟悉了。
对于小白来说,爬虫可能是一件非常复杂、技术门槛很高的事情。比如有人认为学爬虫必须精通 Python,然后哼哧哼哧系统学习 Python 的每个知识点,很久之后发现仍然爬不了数据;有的人则认为先要掌握网页的知识,遂开始 HTMLCSS,结果入了前端的坑,瘁……
但掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现,但建议你从一开始就要有一个具体的目标。
在目标的驱动下,你的学习才会更加精准和高效。那些所有你认为必须的前置知识,都是可以在完成目标的过程中学到的。这里给你一条平滑的、零基础快速入门的学习路径。
1.学习 Python 包并实现基本的爬虫过程
2.了解非结构化数据的存储
3.学习scrapy,搭建工程化爬虫
4.学习数据库知识,应对大规模数据存储与提取
5.掌握各种技巧,应对特殊网站的反爬措施
6.分布式爬虫,实现大规模并发采集,提升效率
一
学习 Python 包并实现基本的爬虫过程
大部分爬虫都是按“发送请求——获得页面——解析页面——抽取并储存内容”这样的流程来进行,这其实也是模拟了我们使用浏览器获取网页信息的过程。
Python中爬虫相关的包很多:urllib、requests、bs4、scrapy、pyspider 等,建议从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。
如果你用过 BeautifulSoup,会发现 Xpath 要省事不少,一层一层检查元素代码的工作,全都省略了。这样下来基本套路都差不多,一般的静态网站根本不在话下,豆瓣、糗事网络、腾讯新闻等基本上都可以上手了。
当然如果你需要爬取异步加载的网站,可以学习浏览器抓包分析真实请求或者学习Selenium来实现自动化,这样,知乎、时光网、猫途鹰这些动态的网站也可以迎刃而解。
二
了解非结构化数据的存储
爬回来的数据可以直接用文档形式存在本地,也可以存入数据库中。
开始数据量不大的时候,你可以直接通过 Python 的语法或 pandas 的方法将数据存为csv这样的文件。
当然你可能发现爬回来的数据并不是干净的,可能会有缺失、错误等等,你还需要对数据进行清洗,可以学习 pandas 包的基本用法来做数据的预处理,得到更干净的数据。
三
学习 scrapy,搭建工程化的爬虫
掌握前面的技术一般量级的数据和代码基本没有问题了,但是在遇到非常复杂的情况,可能仍然会力不从心,这个时候,强大的 scrapy 框架就非常有用了。
scrapy 是一个功能非常强大的爬虫框架,它不仅能便捷地构建request,还有强大的 selector 能够方便地解析 response,然而它最让人惊喜的还是它超高的性能,让你可以将爬虫工程化、模块化。
学会 scrapy,你可以自己去搭建一些爬虫框架,你就基本具备爬虫工程师的思维了。
四
学习数据库基础,应对大规模数据存储
爬回来的数据量小的时候,你可以用文档的形式来存储,一旦数据量大了,这就有点行不通了。所以掌握一种数据库是必须的,学习目前比较主流的 MongoDB 就OK。
MongoDB 可以方便你去存储一些非结构化的数据,比如各种评论的文本,图片的链接等等。你也可以利用PyMongo,更方便地在Python中操作MongoDB。
因为这里要用到的数据库知识其实非常简单,主要是数据如何入库、如何进行提取,在需要的时候再学习就行。
五
掌握各种技巧,应对特殊网站的反爬措施
当然,爬虫过程中也会经历一些绝望啊,比如被网站封IP、比如各种奇怪的验证码、userAgent访问限制、各种动态加载等等。
遇到这些反爬虫的手段,当然还需要一些高级的技巧来应对,常规的比如访问频率控制、使用代理IP池、抓包、验证码的OCR处理等等。
往往网站在高效开发和反爬虫之间会偏向前者,这也为爬虫提供了空间,掌握这些应对反爬虫的技巧,绝大部分的网站已经难不到你了.
六
分布式爬虫,实现大规模并发采集
爬取基本数据已经不是问题了,你的瓶颈会集中到爬取海量数据的效率。这个时候,相信你会很自然地接触到一个很厉害的名字:分布式爬虫。
分布式这个东西,听起来很恐怖,但其实就是利用多线程的原理让多个爬虫同时工作,需要你掌握 Scrapy + MongoDB + Redis 这三种工具。
Scrapy 前面我们说过了,用于做基本的页面爬取,MongoDB 用于存储爬取的数据,Redis 则用来存储要爬取的网页队列,也就是任务队列。
所以有些东西看起来很吓人,但其实分解开来,也不过如此。当你能够写分布式的爬虫的时候,那么你可以去尝试打造一些基本的爬虫架构了,实现一些更加自动化的数据获取。
你看,这一条学习路径下来,你已然可以成为老司机了,非常的顺畅。所以在一开始的时候,尽量不要系统地去啃一些东西,找一个实际的项目(开始可以从豆瓣、小猪这种简单的入手),直接开始就好。
因为爬虫这种技术,既不需要你系统地精通一门语言,也不需要多么高深的数据库技术,高效的姿势就是从实际的项目中去学习这些零散的知识点,你能保证每次学到的都是最需要的那部分。
当然唯一麻烦的是,在具体的问题中,如何找到具体需要的那部分学习资源、如何筛选和甄别,是很多初学者面临的一个大问题。
以上就是我的回答,希望对你有所帮助,望采纳。
㈡ 谁会用python编写爬取淘宝商品信息的爬虫
店铺及时上新产品,没有持续更新产品的店铺是就如同没有生命力的一潭死水一样,保持持续的上新,才可以不断引进流量。
㈢ 如何一个月入门Python爬虫,轻松爬取大规模数据
链接:https://pan..com/s/1wMgTx-M-Ea9y1IYn-UTZaA
课程简介
毕业不知如何就业?工作效率低经常挨骂?很多次想学编程都没有学会?
Python 实战:四周实现爬虫系统,无需编程基础,二十八天掌握一项谋生技能。
带你学到如何从网上批量获得几十万数据,如何处理海量大数据,数据可视化及网站制作。
课程目录
开始之前,魔力手册 for 实战学员预习
第一周:学会爬取网页信息
第二周:学会爬取大规模数据
第三周:数据统计与分析
第四周:搭建 Django 数据可视化网站
......
㈣ python 怎样爬取网页所有链接
给你贴一下我前一段时间回答的类似问题,用的soup,还有一个用的正则就不贴了,手机不太方便,如下。
import beautifulsoup
import urllib2
def main():
userMainUrl = "你要抓取的地址"
req = urllib2.Request(userMainUrl)
resp = urllib2.urlopen(req)
respHtml = resp.read()
foundLabel = respHtml.findAll("label")
finalL =foundLabel.string
print "biaoti=",finalL
if __name__=="__main__":
main();
PS:如果不会改的话追问一下,回头我用电脑给你写一份
㈤ 如何爬虫天猫店铺数据python
本编博客是关于爬取天猫店铺中指定店铺的所有商品基础信息的爬虫,爬虫运行只需要输入相应店铺的域名名称即可,信息将以csv表格的形式保存,可以单店爬取也可以增加一个循环进行同时爬取。
源码展示
首先还是完整代码展示,后面会分解每个函数的意义。
# -*- coding: utf-8 -*-
import requests
import json
import csv
import random
import re
from datetime import datetime
import time
class TM_procs(object):
def __init__(self,storename):
self.storename = storename
self.url = ''.format(storename)
self.headers = {
"user-agent":"Mozilla/5.0 (iPhone; CPU iPhone OS 9_1 like Mac OS X) AppleWebKit/601.1.46 "
"(KHTML, like Gecko) Version/9.0 Mobile/13B143 Safari/601.1"
}
datenum = datetime.now().strftime('%Y%m%d%H%M')
self.filename = '{}_{}.csv'.format(self.storename, datenum)
self.get_file()
def get_file(self):
'''创建一个含有标题的表格'''
title = ['item_id','price','quantity','sold','title','totalSoldQuantity','url','img']
with open(self.filename,'w',newline='') as f:
writer = csv.DictWriter(f,fieldnames=title)
writer.writeheader()
return
def get_totalpage(self):
'''提取总页码数'''
num = random.randint(83739921,87739530)
enrl = '/shop/shop_auction_search.do?sort=s&p=1&page_size=12&from=h5&ajson=1&_tm_source=tmallsearch&callback=jsonp_{}'
url = self.url + enrl.format(num)
html = requests.get(url,headers=self.headers).text
infos = re.findall('(({.*}))',html)[0]
infos = json.loads(infos)
totalpage = infos.get('total_page')
return int(totalpage)
def get_procts(self,page):
'''提取单页商品列表'''
num = random.randint(83739921, 87739530)
enrl = '/shop/shop_auction_search.do?sort=s&p={}&page_size=12&from=h5&ajson=1&_tm_source=tmallsearch&callback=jsonp_{}'
url = self.url + enrl.format(page,num)
html = requests.get(url, headers=self.headers).text
infos = re.findall('(({.*}))', html)[0]
infos = json.loads(infos)
procts = infos.get('items')
title = ['item_id', 'price', 'quantity', 'sold', 'title', 'totalSoldQuantity', 'url', 'img']
with open(self.filename, 'a', newline='') as f:
writer = csv.DictWriter(f, fieldnames=title)
writer.writerows(procts)
def main(self):
'''循环爬取所有页面宝贝'''
total_page = self.get_totalpage()
for i in range(1,total_page+1):
self.get_procts(i)
print('总计{}页商品,已经提取第{}页'.format(total_page,i))
time.sleep(1+random.random())
if __name__ == '__main__':
storename = 'uniqlo'
tm = TM_procs(storename)
tm.main()
上面代码是选择了优衣库作为测试店铺,直接输入优衣库店铺的域名中关键词即可,最终表格会按照店铺名称和时间名词。
代码解读
导入库说明
requests库不用多数,爬取网页的主要库
json库是用来解析 json 格式的数据的,也就是 Python 中的字典格式
csv库是用来创建 csv 表格和保存信息的
random库是用来生成一个随机数的,这个代码中用到了两次,第一次是生成一个随机数据去获取最新的网页信息而不是缓存信息,第二次是随机一个时间,来减缓爬虫速度
re库是正则,主要用来提取信息
datetime和time都是时间库,前者一般用来生成当前时间字符串,后者本爬虫使用设置延迟时间
爬虫思路
首先通过分析手机端天猫店铺所有商品的网页,可以发现每次下滑一页都有一个 js 被加载,这个 js 的规律可以总结一下;
通过分析可以发现每次请求 js 都可以得到一个关键信息,那就是 total_page 这个参数,这也一想就能猜到,就是当前店铺的总页码数,所以可以先取得这个数字,然后使用循环爬取全店商品;
每一页有24个商品,而请求得到的是一个类似于 json 格式的网页信息,但是并非是直接的 json,所以可以用正则表达式提取符合 json 格式的部分留用;
将每一页的信息保存到 csv 表格中,可以直接使用 csv 库的字典存储方式,非常方便;
得到了单页的信息,也得到了总页码数,只需要一个循环就可以爬取全店的商品了。
构造爬虫类
上面代码依次完成以下操作:
首先整个爬虫是写成了一个类,在初始化类的时候需要传递一个参数,这个参数就是店铺的名称。
然后构造出店铺的所有商品页面的前半部分,这部分都是不会变的
接着设置一个请求头
按照当前时间生成一个以时间为依据的字符串,用来给文件命名,然后赋值给文件名称,确定保存文件的名称
最后一句是在类生成的时候就运行这个函数,及生成一个带有标题的表格,后面会说道这个函数的具体含义
㈥ 用python在天猫上爬取商品动态价格和销量时
python 2.6 + selenium-2.53.6 + firefox45.0 + BeautifulSoup3.2.1 或者 python 2.6 + selenium-2.53.6 + phantomjs 2.1.1
㈦ 如何用python写一个爬虫统计淘宝某件商品的销量
淘宝有相应的API可以查询商品销量,但似乎是收费的。
还有一种办法就是,抓取商品详情页面内容,提取出销量。
㈧ 怎样用python求超市销售量前五商品
没表、没数据,没字段、、、
只能说下大致思路:
pandas 读表,groupby聚合,sort_values(by=销量,ascending=Flase)
pd.head(5),前五行数据就是。
㈨ python如何爬取动态加载的网页数据,例如我的打工网企业链接(需要底部的加载更多才会显示)
content=urllib.urlopen(url).read()
forxin['LabelWageDes','LabelWorkDes','LabelEnterpriseDesc']:
pattern=re.compile(r'<spanid="ctl00_ContentPlaceHolder1_'+x+'">(.*?)</span></div>')
forvalueinpattern.findall(content):
split_values=value.split('<br/>')
forlineinsplit_values:
printline