Ⅰ python十大必学模块是什么
这个不能一概而论的,据说python目前高达27万+个库,看你学习的方向必学模块也有不同,简单列举:
1、网络通用方面:
urllib-网络库
requests-网络库
pycurl– 网络库
httplib2– 网络库
RoboBrowser– 浏览网页
MechanicalSoup-一个与网站自动交互Python库
socket– 底层网络接口
2、爬虫方面:
grab– 爬虫框架
scrapy– 网络爬虫框架,不支持Python3
pyspider–爬虫系统。
cola– 爬虫框架
portia– 可视化爬虫
3、HTML/XML解析方面:
lxml– 高效HTML/ XML处理库
cssselect– 解析DOM树和CSS选择器。
pyquery– 解析DOM树和jQuery选择器。
html5lib– 根据WHATWG规范生成HTML/ XML文档的DOM
feedparser– 解析RSS/ATOM feeds。
MarkupSafe– 为XML/HTML/XHTML提供了安全转义的字符串。
xhtml2pdf– 将HTML/CSS转换为PDF。
untangle– XML文件转Python对象
4、文件处理方面:
xpinyin– 将中国汉字转为拼音
tablib– 数据导出为XLS、CSV、JSON、等格式的模块
textract– 从文件中提取文本
messytables– 解析表格数据
rows– 常用数据接口
Office
python-docx– 读取,查询和修改docx文件
xlwt/xlrd– 从Excel文件读取写入数据和格式信息
Markdown
Python-Markdown– 一个用Python实现的John Gruber的Markdown。
Ⅱ python中什么是模块
模块可以理解为程序包,像绘图色matplotlib,数学计算色numpy,import进python程序即可调用其中函数完成特定功能
Ⅲ python标准库中常用的网络相关模块有哪些
1、asynchat、asyncore
asynchat是asyncore的增强版。asyncore则是异步套接字处理程序。
2、Cookie、cookielib
Cookie对象操作,主要用于服务器。cookielib客户端的cookie的支持。
3、email
E-mail邮件消息的支持。包括MIME
4、imaplib
IMAP4客户端模块
5、mailbox
读取多种邮箱的格式
6、mailcap
通过mailcap文件访问MIME配置
7、mhlib
访问MH邮箱
8、poplib
POP客户端模块
9、robotparser
支持解析Web服务器的robot文件
10、SimpleXMLRPCServer
一个简单的XML-RPC服务器
11、smtpd、smtplib
SMTP服务器端模块、SMTP客户端模块
python标准库中常用的网络相关模块并不止以上这些。还有很多,但并不一定都需要了解,只需在需要使用的时候查找参考使用即可。
Ⅳ python3最最常用的模块你收藏了吗
没收藏
Ⅳ 常用Python机器学习库有哪些
Python作为一门理想的集成语言,将各种技术绑定在一起,除了为用户提供更方便的功能之外,还是一个理想的粘合平台,在开发人员与外部库的低层次集成人员之间搭建连接,以便用C、C++实现更高效的算法。
使用Python编程可以快速迁移代码并进行改动,无须花费过多的精力在修改代码与代码规范上。开发者在Python中封装了很多优秀的依赖库,可以直接拿来使用,常见的机器学习库如下:
1、Scikit-Learn
Scikit-Learn基于Numpy和Scipy,是专门为机器学习建造的一个Python模块,提供了大量用于数据挖掘和分析的工具,包括数据预处理、交叉验证、算法与可视化算法等一系列接口。
Scikit-Learn基本功能可分为六个部分:分类、回归、聚类、数据降维、模型选择、数据预处理。其中集成了大量分类、回归、聚类功能,包括支持向量机、逻辑回归、随机森林、朴素贝叶斯等。
2、Orange3
Orange3是一个基于组件的数据挖掘和机器学习软件套装,支持Python进行脚本开发。它包含一系列的数据可视化、检索、预处理和建模技术,具有一个良好的用户界面,同时也可以作为Python的一个模块使用。
用户可通过数据可视化进行数据分析,包含统计分布图、柱状图、散点图,以及更深层次的决策树、分层聚簇、热点图、MDS等,并可使用它自带的各类附加功能组件进行NLP、文本挖掘、构建网络分析等。
3、XGBoost
XGBoost是专注于梯度提升算法的机器学习函数库,因其优良的学习效果及高效的训练速度而获得广泛的关注。XGBoost支持并行处理,比起同样实现了梯度提升算法的Scikit-Learn库,其性能提升10倍以上。XGBoost可以处理回归、分类和排序等多种任务。
4、NuPIC
NuPIC是专注于时间序列的一个机器学习平台,其核心算法为HTM算法,相比于深度学习,其更为接近人类大脑的运行结构。HTM算法的理论依据主要是人脑中处理高级认知功能的新皮质部分的运行原理。NuPIC可用于预测以及异常检测,使用面非常广,仅要求输入时间序列即可。
5、Milk
Milk是Python中的一个机器学习工具包。Milk注重提升运行速度与降低内存占用,因此大部分对性能敏感的代码都是使用C++编写的,为了便利性在此基础上提供Python接口。重点提供监督分类方法,如SVMs、KNN、随机森林和决策树等。
Ⅵ 盘点Python常用的模块和包
模块
1.定义
计算机在开发过程中,代码越写越多,也就越难以维护,所以为了编写可维护的代码,我们会把函数进行分组,放在不同的文件里。在python里,一个.py文件就是一个模块。
2.优点:
提高代码的可维护性。
提高代码的复用,当模块完成时就可以在其他代码中调用。
引用其他模块,包含python内置模块和其他第三方模块。
避免函数名和变量名等名称冲突。
python内建模块:
1.sys模块
2.random模块
3.os模块:
os.path:讲解
https://www.cnblogs.com/yufeihlf/p/6179547.html
数据可视化
1.matplotlib :
是Python可视化程序库的泰斗,它的设计和在1980年代被设计的商业化程序语言MATLAB非常接近。比如pandas和Seaborn就是matplotlib的外包,它们让你能用更少的代码去调用 matplotlib的方法。
访问:
https://matplotlib.org/
颜色:
https://www.cnblogs.com/darkknightzh/p/6117528.html
教程:
https://wizardforcel.gitbooks.io/matplotlib-user-guide/3.1.html
2.Seaborn:
它是构建在matplotlib的基础上的,用简洁的代码来制作好看的图表。Seaborn跟matplotlib最大的区别就是它的默认绘图风格和色彩搭配都具有现代美感。
访问:
http://seaborn.pydata.org/index.html
3.ggplot:
gplot 跟 matplotlib 的不同之处是它允许你叠加不同的图层来完成一幅图
访问:
http://ggplot.yhathq.com/
4.Mayavi:
Mayavi2完全用Python编写,因此它不但是一个方便实用的可视化软件,而且可以方便地用Python编写扩展,嵌入到用户编写的Python程序中,或者直接使用其面向脚本的API:mlab快速绘制三维图
访问:http://code.enthought.com/pages/mayavi-project.html
讲解:https://blog.csdn.net/ouening/article/details/76595427https://www.jianshu.com/p/81e6f4f1cdd8
5.TVTK:
TVTK库对标准的VTK库进行包装,提供了Python风格的API、支持Trait属性和numpy的多维数组。
VTK (http://www.vtk.org/) 是一套三维的数据可视化工具,它由C++编写,包涵了近千个类帮助我们处理和显示数据
讲解:https://docs.huihoo.com/scipy/scipy-zh-cn/tvtk_intro.html
机器学习
1.Scikit-learn
是一个简单且高效的数据挖掘和数据分析工具,易上手,可以在多个上下文中重复使用。它基于NumPy, SciPy 和 matplotlib,开源,可商用(基于 BSD 许可)。
访问:
讲解:https://blog.csdn.net/finafily0526/article/details/79318401
2.Tensorflow
最初由谷歌机器智能科研组织中的谷歌大脑团队(Google Brain Team)的研究人员和工程师开发。该系统设计的初衷是为了便于机器学习研究,能够更快更好地将科研原型转化为生产项目。
相关推荐:《Python视频教程》
Web框架
1.Tornado
访问:http://www.tornadoweb.org/en/stable/
2.Flask
访问:http://flask.pocoo.org/
3.Web.py
访问:http://webpy.org/
4.django
https://www.djangoproject.com/
5.cherrypy
http://cherrypy.org/
6.jinjs
http://docs.jinkan.org/docs/jinja2/
GUI 图形界面
1.Tkinter
https://wiki.python.org/moin/TkInter/
2.wxPython
https://www.wxpython.org/
3.PyGTK
http://www.pygtk.org/
4.PyQt
https://sourceforge.net/projects/pyqt/
5.PySide
http://wiki.qt.io/Category:LanguageBindings::PySide
科学计算
教程
https://docs.huihoo.com/scipy/scipy-zh-cn/index.html#
1.numpy
访问
http://www.numpy.org/
讲解
https://blog.csdn.net/lm_is_dc/article/details/81098805
2.sympy
sympy是一个Python的科学计算库,用一套强大的符号计算体系完成诸如多项式求值、求极限、解方程、求积分、微分方程、级数展开、矩阵运算等等计算问题
访问
https://docs.sympy.org/0.7.1/guide.html#guide
讲解
https://www.jianshu.com/p/339c91ae9f41
解方程
https://www.cnblogs.com/zyg123/p/10549354.html
3.SciPy
官网
https://www.scipy.org/
讲解
https://blog.csdn.net/wsp_1138886114/article/details/80444621
4.pandas
官网
http://pandas.pydata.org/
讲解
https://www.cnblogs.com/linux-wangkun/p/5903945.html
5.blaze
官网
http://blaze.readthedocs.io/en/latest/index.html
密码学
1.cryptography
https://pypi.python.org/pypi/cryptography/
2.hashids
http://www.oschina.net/p/hashids
3.Paramiko
http://www.paramiko.org/
4.Passlib
https://pythonhosted.org/passlib/
5.PyCrypto
https://pypi.python.org/pypi/pycrypto
6.PyNacl
http://pynacl.readthedocs.io/en/latest/
爬虫相关
requests
http://www.python-requests.org/
scrapy
https://scrapy.org/
pyspider
https://github.com/binux/pyspider
portia
https://github.com/scrapinghub/portia
html2text
https://github.com/Alir3z4/html2text
BeautifulSoup
https://www.crummy.com/software/BeautifulSoup/
lxml
http://lxml.de/
selenium
http://docs.seleniumhq.org/
mechanize
https://pypi.python.org/pypi/mechanize
PyQuery
https://pypi.python.org/pypi/pyquery/
creepy
https://pypi.python.org/pypi/creepy
gevent
一个高并发的网络性能库
http://www.gevent.org/
图像处理
bigmoyan
http://scikit-image.org/
Python Imaging Library(PIL)
http://www.pythonware.com/procts/pil/
pillow:
http://pillow.readthedocs.io/en/latest/
自然语言处理
1.nltk:
http://www.nltk.org/
教程
https://blog.csdn.net/wizardforcel/article/details/79274443
2.snownlp
https://github.com/isnowfy/snownlp
3.Pattern
https://github.com/clips/pattern
4.TextBlob
http://textblob.readthedocs.io/en/dev/
5.Polyglot
https://pypi.python.org/pypi/polyglot
6.jieba:
https://github.com/fxsjy/jieba
数据库驱动
mysql-python
https://sourceforge.net/projects/mysql-python/
PyMySQL
https://github.com/PyMySQL/PyMySQL
PyMongo
https://docs.mongodb.com/ecosystem/drivers/python/
pymongo
MongoDB库
访问:https://pypi.python.org/pypi/pymongo/
redis
Redis库
访问:https://pypi.python.org/pypi/redis/
cxOracle
Oracle库
访问:https://pypi.python.org/pypi/cx_Oracle
SQLAlchemy
SQL工具包及对象关系映射(ORM)工具
访问:http://www.sqlalchemy.org/
peewee,
SQL工具包及对象关系映射(ORM)工具
访问:https://pypi.python.org/pypi/peewee
torndb
Tornado原装DB
访问:https://github.com/bdarnell/torndb
Web
pycurl
URL处理工具
smtplib模块
发送电子邮件
其他库暂未分类
1.PyInstaller:
是一个十分有用的第三方库,它能够在Windows、Linux、 Mac OS X 等操作系统下将 Python 源文件打包,通过对源文件打包, Python 程序可以在没有安装 Python 的环境中运行,也可以作为一个 独立文件方便传递和管理。
2.Ipython
一种交互式计算和开发环境
讲解
https://www.cnblogs.com/zzhzhao/p/5295476.html
ls、cd 、run、edit、clear、exist
Ⅶ Python random模块常用方法
Python random模块常用方法
这篇文章主要介绍了Python random模块常用方法,本文罗列了最常用的方法,需要的朋友可以参考下
代码如下:
import random
print random.random()
获取一个小于1的浮点数
代码如下:
import random
random.randint(1,10)
获取一个从1到10的整数
代码如下:
import random
print random.uniform(0,2)
获取一个大于0小于2的浮点数
代码如下:
import random
print random.randrange(1,10,4)
获取一个从1到10步长为4的随机数
代码如下:
import random
a=[1,2,3,4,5]
random.choice(a)
从列表a从随机取出一个元素
代码如下:
import random
a=[1,2,3,4,5]
random.shuffle(a)
打乱列表a里元素的顺序
代码如下:
import random
a=[1,2,3,4,5]
random.sample(a,3)
从列表a中以随机顺序取出3个元素(一个元素只能取出一次,所以取出的个数不能大于列表所含元素的个数)
Ⅷ python中os和sys模块的区别与常用方法总结
os与sys模块的官方解释如下:
os: This mole provides a portable way of using operating system dependent functionality.
这个模块提供了一种方便的使用操作系统函数的方法。
sys: This mole provides access to some variables used or maintained by the interpreter and to functions that interact strongly with the interpreter.
这个模块可供访问由解释器使用或维护的变量和与解释器进行交互的函数。
总结就是,os模块负责程序与操作系统的交互,提供了访问操作系统底层的接口;sys模块负责程序与python解释器的交互,提供了一系列的函数和变量,用于操控python的运行时环境。
Ⅸ python数据挖掘是什么
数据挖掘(data mining,简称DM),是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信
息和知识的过程。
python数据挖掘常用模块
numpy模块:用于矩阵运算、随机数的生成等
pandas模块:用于数据的读取、清洗、整理、运算、可视化等
matplotlib模块:专用于数据可视化,当然含有统计类的seaborn模块
statsmodels模块:用于构建统计模型,如线性回归、岭回归、逻辑回归、主成分分析等
scipy模块:专用于统计中的各种假设检验,如卡方检验、相关系数检验、正态性检验、t检验、F检验等
sklearn模块:专用于机器学习,包含了常规的数据挖掘算法,如决策树、森林树、提升树、贝叶斯、K近邻、SVM、GBDT、Kmeans等
数据分析和挖掘推荐的入门方式是?小公司如何利用数据分析和挖掘?
关于数据分析与挖掘的入门方式是先实现代码和Python语法的落地(前期也需要你了解一些统计学知识、数学知识等),这个过程需要
你多阅读相关的数据和查阅社区、论坛。然后你在代码落地的过程中一定会对算法中的参数或结果产生疑问,此时再去查看统计学和数据
挖掘方面的理论知识。这样就形成了问题为导向的学习方法,如果将入门顺序搞反了,可能在硬着头皮研究理论算法的过程中就打退堂鼓
了。
对于小公司来说,你得清楚的知道自己的痛点是什么,这些痛点是否能够体现在数据上,公司内部的交易数据、营销数据、仓储数据等是
否比较齐全。在这些数据的基础上搭建核心KPI作为每日或每周的经营健康度衡量,数据分析侧重于历史的描述,数据挖掘则侧重于未来
的预测。
差异在于对数据的敏感度和对数据的个性化理解。换句话说,就是懂分析的人能够从数据中看出破绽,解决问题,甚至用数据创造价值;
不懂分析的人,做不到这些,更多的是描述数据。
更多技术请关注python视频教程。
Ⅹ Python开发中常用的模块有哪些
一、导入模块
import mole
from mole.xx import xx
from mole.xx import xx as rename
from mole.xx import *
二、开源模块
三、常用模块
os模块#用作系统级别的工作
sys模块#提供解释器相关操作
hashlib模块# 用于加密相关的操作
json和pickle模块 #用于序列化数据
subprocess模块
shuit模块 #文件的复制移动
logging模块#格式化记录日志
random模块 用于取随机数
time datetime模块时间模块
re模块 正则匹配