Ⅰ python写一个后台的守护进程
importos,sys,commands,time
defdaemonize(stdin='/dev/null',stdout='/dev/null',stderr='/dev/null'):
"""setdaemonize"""
try:
pid=os.fork()
ifpid>0:
sys.exit(0)
exceptOSError,e:
sys.stderr.write("fork#1failed(%d)%s "%(e.errno,e.strerror))
sys.exit(0)
os.setsid()
os.chdir('.')
os.umask(0)
try:
pid=os.fork()
ifpid>0:
sys.exit(0)
exceptOSError,e:
sys.stderr.write("fork#2failed(%d)%s "%(e.errno,e.strerror))
sys.exit(0)
ifnotstderr:stderr=stdout
si=file(stdin,"r")
so=file(stdout,"w+")
se=file(stderr,"a+")
pid=str(os.getpid())
print"startwithpid:[%s]"%pid
fp=open("pid","w")
print>>fp,pid
fp.close()
sys.stderr.flush()
sys.stdout.flush()
sys.stderr.flush()
os.p2(si.fileno(),sys.stdin.fileno())
os.p2(so.fileno(),sys.stdout.fileno())
os.p2(se.fileno(),sys.stderr.fileno())
defmain():
daemonize(stdout='test.log',stderr='test.log')
cmd="ls"
while1:
(status,ret)=commands.getstatusoutput(cmd)
printstatus
printret
time.sleep(10)
if__name__=="__main__":
main()
你可以尝试照这个写写,基本的元素都齐了,后台运行,执行shell命令
不过如果只是想要后台的话,直接shell后台执行一下也就可以了
Ⅱ 如何使用Python实现多进程编程
1.Process
创建进程的类:Process([group[,target[,name[,args[,kwargs]]]]]),target表示调用对象,args表示调用对象的位置参数元组。kwargs表示调用对象的字典。name为别名。group实质上不使用。
方法:is_alive()、join([timeout])、run()、start()、terminate()。其中,Process以start()启动某个进程。
属性:authkey、daemon(要通过start()设置)、exitcode(进程在运行时为None、如果为–N,表示被信号N结束)、name、pid。其中daemon是父进程终止后自动终止,且自己不能产生新进程,必须在start()之前设置。
例1.1:创建函数并将其作为单个进程
importmultiprocessing
importtime
defworker(interval):
n=5
whilen>0:
print("Thetimeis{0}".format(time.ctime()))
time.sleep(interval)
n-=1
if__name__=="__main__":
p=multiprocessing.Process(target=worker,args=(3,))
p.start()
print"p.pid:",p.pid
print"p.name:",p.name
print"p.is_alive:",p.is_alive()
结果
12345678p.pid:8736p.name:Process-1p.is_alive:TrueThetimeisTueApr2120:55:122015ThetimeisTueApr2120:55:152015ThetimeisTueApr2120:55:182015ThetimeisTueApr2120:55:212015ThetimeisTueApr2120:55:242015
例1.2:创建函数并将其作为多个进程
importmultiprocessing
importtime
defworker_1(interval):
print"worker_1"
time.sleep(interval)
print"endworker_1"
defworker_2(interval):
print"worker_2"
time.sleep(interval)
print"endworker_2"
defworker_3(interval):
print"worker_3"
time.sleep(interval)
print"endworker_3"
if__name__=="__main__":
p1=multiprocessing.Process(target=worker_1,args=(2,))
p2=multiprocessing.Process(target=worker_2,args=(3,))
p3=multiprocessing.Process(target=worker_3,args=(4,))
p1.start()
p2.start()
p3.start()
print("ThenumberofCPUis:"+str(multiprocessing.cpu_count()))
forpinmultiprocessing.active_children():
print("childp.name:"+p.name+" p.id"+str(p.pid))
print"END!!!!!!!!!!!!!!!!!"
结果
1234567891011ThenumberofCPUis:4childp.name:Process-3p.id7992childp.name:Process-2p.id4204childp.name:Process-1p.id6380END!!!!!!!!!!!!!!!!!worker_1worker_3worker_2endworker_1endworker_2endworker_3
例1.3:将进程定义为类
importmultiprocessing
importtime
classClockProcess(multiprocessing.Process):
def__init__(self,interval):
multiprocessing.Process.__init__(self)
self.interval=interval
defrun(self):
n=5
whilen>0:
print("thetimeis{0}".format(time.ctime()))
time.sleep(self.interval)
n-=1
if__name__=='__main__':
p=ClockProcess(3)
p.start()
注:进程p调用start()时,自动调用run()
结果
12345thetimeisTueApr2120:31:302015thetimeisTueApr2120:31:332015thetimeisTueApr2120:31:362015thetimeisTueApr2120:31:392015thetimeisTueApr2120:31:422015
Ⅲ python怎么实现一个进程
想要充分利用多核CPU资源,Python中大部分情况下都需要使用多进程,Python中提供了multiprocessing这个包实现多进程。multiprocessing支持子进程、进程间的同步与通信,提供了Process、Queue、Pipe、Lock等组件。
开辟子进程
multiprocessing中提供了Process类来生成进程实例
Process([group [, target [, name [, args [, kwargs]]]]])1
group分组,实际上不使用
target表示调用对象,你可以传入方法的名字
args表示给调用对象以元组的形式提供参数,比如target是函数a,他有两个参数m,n,那么该参数为args=(m, n)即可
kwargs表示调用对象的字典
name是别名,相当于给这个进程取一个名字
先来个小例子:
运行结果:
Parent process run. subProcess is 30196
Parent process end,Mon Mar 27 11:20:21 2017
subProcess 30196 run, Mon Mar 27 11:20:21 2017
subProcess 30196 run, Mon Mar 27 11:20:23 2017
subProcess 30196 run, Mon Mar 27 11:20:25 2017
根据运行结果可知,父进程运行结束后子进程仍然还在运行,这可能造成僵尸( zombie)进程。
通常情况下,当子进程终结时,它会通知父进程,清空自己所占据的内存,并在内核里留下自己的退出信息。父进程在得知子进程终结时,会从内核中取出子进程的退出信息。但是,如果父进程早于子进程终结,这可能造成子进程的退出信息滞留在内核中,子进程成为僵尸(zombie)进程。当大量僵尸进程积累时,内存空间会被挤占。
有什么办法可以避免僵尸进程呢?
这里介绍进程的一个属性 deamon,当其值为TRUE时,其父进程结束,该进程也直接终止运行(即使还没运行完)。
所以给上面的程序加上p.deamon = true,看看效果。
执行结果:
Parent process run. subProcess is 31856
Parent process end,Mon Mar 27 11:40:10 2017
这是问题又来了,子进程并没有执行完,这不是所期望的结果。有没办法将子进程执行完后才让父进程结束呢?
这里引入p.join()方法,它使子进程执行结束后,父进程才执行之后的代码
执行结果:
subProcess 32076 run, Mon Mar 27 11:46:07 2017
subProcess 32076 run, Mon Mar 27 11:46:09 2017
subProcess 32076 run, Mon Mar 27 11:46:11 2017
Parent process run. subProcess is 32076
Parent process end,Mon Mar 27 11:46:13 2017
这样所有的进程就能顺利的执行了。
将进程定义成类
通过继承Process类,来自定义进程类,实现run方法。实例p通过调用p.start()时自动调用run方法。
如下:
执行结果和上一个例子相同。
创建多个进程
很多时候系统都需要创建多个进程以提高CPU的利用率,当数量较少时,可以手动生成一个个Process实例。当进程数量很多时,或许可以利用循环,但是这需要程序员手动管理系统中并发进程的数量,有时会很麻烦。这时进程池Pool就可以发挥其功效了。可以通过传递参数限制并发进程的数量,默认值为CPU的核数。
直接上例子:
执行结果:
开头部分
Run the main process (30920).
Waiting for all subprocesses done …
Run child process Process0 (32396)
Run child process Process3 (25392)
Run child process Process1 (28732)
Run child process Process2 (32436)
末尾部分:
Run child process Process15 (25880)
All subprocesses done
All process last 2.49 seconds.
相关说明:
这里进程池对并发进程的限制数量为8个,而程序运行时会产生16个进程,进程池将自动管理系统内进程的并发数量,其余进程将会在队列中等待。限制并发数量是因为,系统中并发的进程不是越多越好,并发进程太多,可能使CPU大部分的时间用于进程调度,而不是执行有效的计算。
采用多进程并发技术时,就单个处理机而言,其对进程的执行是串行的。但具体某个时刻哪个进程获得CPU资源而执行是不可预知的(如执行结果的开头部分,各进程的执行顺序不定),这就体现了进程的异步性。
如果单个程序执行14次run_proc函数,那么它会需要至少16秒,通过进程的并发,这里只需要2.49秒,可见并发的优势。
Ⅳ 如何在Python中编写并发程序
GIL
在Python中,由于历史原因(GIL),使得Python中多线程的效果非常不理想.GIL使得任何时刻Python只能利用一个CPU核,并
且它的调度算法简单粗暴:多线程中,让每个线程运行一段时间t,然后强行挂起该线程,继而去运行其他线程,如此周而复始,直到所有线程结束.
这使得无法有效利用计算机系统中的"局部性",频繁的线程切换也对缓存不是很友好,造成资源的浪费.
据说Python官方曾经实现了一个去除GIL的Python解释器,但是其效果还不如有GIL的解释器,遂放弃.后来Python官方推出了"利
用多进程替代多线程"的方案,在Python3中也有concurrent.futures这样的包,让我们的程序编写可以做到"简单和性能兼得".
多进程/多线程+Queue
一般来说,在Python中编写并发程序的经验是:计算密集型任务使用多进程,IO密集型任务使用多进程或者多线程.另外,因为涉及到资源共享,所
以需要同步锁等一系列麻烦的步骤,代码编写不直观.另外一种好的思路是利用多进程/多线程+Queue的方法,可以避免加锁这样麻烦低效的方式.
现在在Python2中利用Queue+多进程的方法来处理一个IO密集型任务.
假设现在需要下载多个网页内容并进行解析,单进程的方式效率很低,所以使用多进程/多线程势在必行.
我们可以先初始化一个tasks队列,里面将要存储的是一系列dest_url,同时开启4个进程向tasks中取任务然后执行,处理结果存储在一个results队列中,最后对results中的结果进行解析.最后关闭两个队列.
下面是一些主要的逻辑代码.
# -*- coding:utf-8 -*-
#IO密集型任务
#多个进程同时下载多个网页
#利用Queue+多进程
#由于是IO密集型,所以同样可以利用threading模块
import multiprocessing
def main():
tasks = multiprocessing.JoinableQueue()
results = multiprocessing.Queue()
cpu_count = multiprocessing.cpu_count() #进程数目==CPU核数目
create_process(tasks, results, cpu_count) #主进程马上创建一系列进程,但是由于阻塞队列tasks开始为空,副进程全部被阻塞
add_tasks(tasks) #开始往tasks中添加任务
parse(tasks, results) #最后主进程等待其他线程处理完成结果
def create_process(tasks, results, cpu_count):
for _ in range(cpu_count):
p = multiprocessing.Process(target=_worker, args=(tasks, results)) #根据_worker创建对应的进程
p.daemon = True #让所有进程可以随主进程结束而结束
p.start() #启动
def _worker(tasks, results):
while True: #因为前面所有线程都设置了daemon=True,故不会无限循环
try:
task = tasks.get() #如果tasks中没有任务,则阻塞
result = _download(task)
results.put(result) #some exceptions do not handled
finally:
tasks.task_done()
def add_tasks(tasks):
for url in get_urls(): #get_urls() return a urls_list
tasks.put(url)
def parse(tasks, results):
try:
tasks.join()
except KeyboardInterrupt as err:
print "Tasks has been stopped!"
print err
while not results.empty():
_parse(results)
if __name__ == '__main__':
main()
利用Python3中的concurrent.futures包
在Python3中可以利用concurrent.futures包,编写更加简单易用的多线程/多进程代码.其使用感觉和Java的concurrent框架很相似(借鉴?)
比如下面的简单代码示例
def handler():
futures = set()
with concurrent.futures.ProcessPoolExecutor(max_workers=cpu_count) as executor:
for task in get_task(tasks):
future = executor.submit(task)
futures.add(future)
def wait_for(futures):
try:
for future in concurrent.futures.as_completed(futures):
err = futures.exception()
if not err:
result = future.result()
else:
raise err
except KeyboardInterrupt as e:
for future in futures:
future.cancel()
print "Task has been canceled!"
print e
return result
总结
要是一些大型Python项目也这般编写,那么效率也太低了.在Python中有许多已有的框架使用,使用它们起来更加高效.
Ⅳ 如何部署python web程序
Python Web 程序的部署方案
综合而言, 高性能的Python web站点部署方式首推 nginx + uwsgi
apache + mod_wsgi 是简单稳定但性能一般的方式
API服务器 可以直接使用tornado或者gevent
mod_python
非常原始的cgi模式部署python已经没有什么好介绍了。对于不太追求性能的管理系统和网站来说,使用 Apache 部署是一个不错的选择。较早的时候,使用 mode_python 部署python的web应用十分流行,在Django 0.96 的时候官方文档甚至推荐这种方式。
它将Python解释器嵌入到Apache server,以提供一个访问Apache server内部的接口。mod_python 在现在看来性能是不佳的,每一个http请求 mod_python 都会由一个进程初始化python解释器、载入代码、执行、然后销毁进程。
mod_wsgi
如果非要用Apache来部署python应用,mod_wsgi是一个更好的选择。WSGI 全称是 Web Server Gateway Interface ,由 PEP-333 定义。 基本上所有的python web框架都实现了wsgi接口,用mod_wsgi 能部署任何实现了wsgi的框架。实际上,不需要任何框架也可以用mod_wsgi 部署python程序。使用mod_wsgi的daemon模式,python程序会常驻内存,不会有很大的初始化和销毁进程方面的开销,所以性能是好于mod_python的。综合来说,使用Apache部署python web程序,推荐使用mod_wsgi的daemon模式。
Fastcgi
先说观点:不建议用fastcgi的方式部署Python web。
前几年由于lighttpd风头正劲和豆瓣的成功案例,fastcgi是一种很流行的部署方式。fastcgi与具体语言无关,也与web服务器无关。是一种通用的部署方式。fastcgi是对于cgi的增强,CGI程序运行在独立的进程中,并对每个Web请求建立一个进程。面对大量请求,进程的大量建立和消亡使操作系统性能大大下降。
与为每个请求创建一个新的进程不同,FastCGI使用持续的进程来处理一连串的请求。这些进程由FastCGI服务器管理,而不是web服务器。 当进来一个请求时,web服务器把环境变量和这个页面请求通过一个socket比如FastCGI进程与web服务器都位于本地)或者一个TCP connection(FastCGI进程在远端的server farm)传递给FastCGI进程。
主流的web服务器,Apache,lighttpd,nginx 都支持fastcgi,在几年前,lighttpd的mod_fcgi模块性能强劲,lighttpd+fastcgi十分流行。无论是python,ruby还是php,都有大量的站点使用这种方式部署。由于nginx的崛起,现在很少有人使用lighttpd了。
fastcgi 并不是专门为python设计,并不是所有的python框架天然的支持fastcgi,通常需要flup这样的容器来配适。flup由python编写,和专门的c实现的wsgi容器比起来性能显得相当不堪。fastcgi的稳定性对于新兴的wsgi容器来说也有差距。无论从哪个方面来看,部署python web程序,fastcgi 都已经是过去式。
uwsgi
前几年nginx还未内置uwsgi模块的时候,部署uwsgi还是一件挺麻烦的事情。随着能够在nginx中直接使用uwsgi模块,uwsgi已经是最可靠,最方便的高性能python web程序的部署方式了。
在1U的四核XEON服务器上,一个简单的wsgi handler甚至能用AB压到8000以上的qps,这已经是完爆tornado,接近gevent的性能了。 同时,uwsgi的稳定性极好。之前我们有个每天500w-1000w动态请求的站点使用uwsgi部署非常稳定,在一个渣HP 1U 服务器上,基本不用管它。
上面提到的部署方式都是相对于web网站的方式,在移动互联网的时代,我们需要的是高性能的API服务,上面这些都是过时的东西。
tornado
tornado 号称高性能,如果拿他写网站,其实一般般,只不过跟uwsgi加一些简单框架差不多而已。它真正的作用,是用来写API服务器和长连接的服务器。
由于tornado能够直接处理http请求,很多人直接拿他来裸奔直接提供服务。这种方式是不可取的,单线程的tornado只能利用cpu的一个核心,并且一旦阻塞直接就废了。通常情况下,由supervisor启动多个tornado进程,通过nginx进行反向代理负载均衡。nginx 1.14 以后的版本反向代理支持长连接,配合tornado的comet效果很好。
tornado还有一些比较奇葩的用法,比如用来做wsgi容器之类的。
gevent
gevent是一个神器,能做的事情很多。在web方面,处理http请求,用起来其实跟tornado差不多,但是要简陋很多,cookie之类的都没有。用gevent写的一些API服务,部署方式还是类似tornado,用supervisor管理多个守护进程,通过nginx做负载均衡。 同样的它的奇葩用法也和tornado一样,可以当wsgi容器用。
Ⅵ python daemon thread 什么概念
daemon
A boolean value indicating whether this thread is a daemon thread (True) or not (False). This must be set before start() is called, otherwise RuntimeError is raised. Its initial value is inherited from the creating thread; the main thread is not a daemon thread and therefore all threads created in the main thread default to daemon = False.
The entire Python program exits when no alive non-daemon threads are left.
当daemon被设置为True时,如果主线程退出,那么子线程也将跟着退出,
反之,子线程将继续运行,直到正常退出。
Ⅶ python 多线程和多进程的区别 mutiprocessing theading
在socketserver服务端代码中有这么一句:
server = socketserver.ThreadingTCPServer((ip,port), MyServer)
ThreadingTCPServer这个类是一个支持多线程和TCP协议的socketserver,它的继承关系是这样的:
class ThreadingTCPServer(ThreadingMixIn, TCPServer): pass
右边的TCPServer实际上是主要的功能父类,而左边的ThreadingMixIn则是实现了多线程的类,ThreadingTCPServer自己本身则没有任何代码。
MixIn在Python的类命名中很常见,称作“混入”,戏称“乱入”,通常为了某种重要功能被子类继承。
我们看看一下ThreadingMixIn的源代码:
class ThreadingMixIn:
daemon_threads = False
def process_request_thread(self, request, client_address):
try:
self.finish_request(request, client_address)
self.shutdown_request(request)
except:
self.handle_error(request, client_address)
self.shutdown_request(request)
def process_request(self, request, client_address):
t = threading.Thread(target = self.process_request_thread,
args = (request, client_address))
t.daemon = self.daemon_threads
t.start()
在ThreadingMixIn类中,其实就定义了一个属性,两个方法。其中的process_request()方法实际调用的正是Python内置的多线程模块threading。这个模块是Python中所有多线程的基础,socketserver本质上也是利用了这个模块。
socketserver通过threading模块,实现了多线程任务处理能力,可以同时为多个客户提供服务。
那么,什么是线程,什么是进程?
进程是程序(软件,应用)的一个执行实例,每个运行中的程序,可以同时创建多个进程,但至少要有一个。每个进程都提供执行程序所需的所有资源,都有一个虚拟的地址空间、可执行的代码、操作系统的接口、安全的上下文(记录启动该进程的用户和权限等等)、唯一的进程ID、环境变量、优先级类、最小和最大的工作空间(内存空间)。进程可以包含线程,并且每个进程必须有至少一个线程。每个进程启动时都会最先产生一个线程,即主线程,然后主线程会再创建其他的子线程。
线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元。一个标准的线程由线程ID,当前指令指针(PC),寄存器集合和堆栈组成。另外,线程是进程中的一个实体,是被系统独立调度和分派的基本单位,线程自己不独立拥有系统资源,但它可与同属一个进程的其它线程共享该进程所拥有的全部资源。每一个应用程序都至少有一个进程和一个线程。在单个程序中同时运行多个线程完成不同的被划分成一块一块的工作,称为多线程。
举个例子,某公司要生产一种产品,于是在生产基地建设了很多厂房,每个厂房内又有多条流水生产线。所有厂房配合将整个产品生产出来,单个厂房内的流水线负责生产所属厂房的产品部件,每个厂房都拥有自己的材料库,厂房内的生产线共享这些材料。公司要实现生产必须拥有至少一个厂房一条生产线。换成计算机的概念,那么这家公司就是应用程序,厂房就是应用程序的进程,生产线就是某个进程的一个线程。
线程的特点:
线程是一个execution context(执行上下文),即一个cpu执行时所需要的一串指令。假设你正在读一本书,没有读完,你想休息一下,但是你想在回来时继续先前的进度。有一个方法就是记下页数、行数与字数这三个数值,这些数值就是execution context。如果你的室友在你休息的时候,使用相同的方法读这本书。你和她只需要这三个数字记下来就可以在交替的时间共同阅读这本书了。
线程的工作方式与此类似。CPU会给你一个在同一时间能够做多个运算的幻觉,实际上它在每个运算上只花了极少的时间,本质上CPU同一时刻只能干一件事,所谓的多线程和并发处理只是假象。CPU能这样做是因为它有每个任务的execution context,就像你能够和你朋友共享同一本书一样。
进程与线程区别:
同一个进程中的线程共享同一内存空间,但进程之间的内存空间是独立的。
同一个进程中的所有线程的数据是共享的,但进程之间的数据是独立的。
对主线程的修改可能会影响其他线程的行为,但是父进程的修改(除了删除以外)不会影响其他子进程。
线程是一个上下文的执行指令,而进程则是与运算相关的一簇资源。
同一个进程的线程之间可以直接通信,但是进程之间的交流需要借助中间代理来实现。
创建新的线程很容易,但是创建新的进程需要对父进程做一次复制。
一个线程可以操作同一进程的其他线程,但是进程只能操作其子进程。
线程启动速度快,进程启动速度慢(但是两者运行速度没有可比性)。
由于现代cpu已经进入多核时代,并且主频也相对以往大幅提升,多线程和多进程编程已经成为主流。Python全面支持多线程和多进程编程,同时还支持协程。
Ⅷ python daemon=True有什么作用
定义一个变量daemon = True
这样后面调用使用使用
例如
if daemon:
while daemon:
当为真的时候执行后面的语句,因为定义了变量,当为假时候不执行 daemon=False
Ⅸ 如何将一个python以daemon的方式运行
你可以使用python-daemon这个库,用法很简单。
地址:https://pypi.python.org/pypi/python-daemon/2.0.5
importdaemon
fromspamimportdo_main_program
withdaemon.DaemonContext():
do_main_program()
如果解决了您的问题请采纳!
如果未解决请继续追问
Ⅹ python多线程问题
以下方式都可以解决这个问题:
启动的时候可以在命令末尾加上 &,表示在后台执行。
可以使用 supervisord, upstart, systemd等管理工具来启动你的程序。
把你的程序daemon化,可以使用 python-daemon 等库来实现。