‘壹’ 数控工艺与编程课程设计的目的和意义
数控工艺与编程课程设计的目的和意义:
随着机械制造业的发展,数控加工技术已经广泛普及使用,数控加工技术的应用给传统制造业带来了革命性的变化,且随着数控加工技术的不断发展和应用领域扩大,它对各行各业的发展起着越重要的作用,推动着工业现代化。
因为数控加工技术具备各种优势:便捷、精确、省力、高速、高效、高可靠性等,加之它发展前景乐观,而且涉及领域广,所以对于数控加工技术应用的人才需求在加大。掌握和应用数控加工技术对于提升产品质量、解放和发展生产力有着巨大的帮助。
设计任务:
1、绘制被加工零件的零件图一张(A3或A4);
2、编制机械加工工艺过程;
3、编写数控工艺课程设计说明书一份;
4、编制指定加工工序内容的数控加工工序,包括数控加工工序卡、数控加工刀具卡片、数控加工程序编制(手工编程);
5、课程设计答辩。
以上内容参考:网络-数控机床
以上内容参考:网络-课程设计
‘贰’ 详解数控切削工艺工序设计和编程步骤是什么
数控是指在数控机床上进行零件制造的一种工艺方法,数控机床与传统机床的工艺规程从总体上说是一致的,区别是数控工艺用数字信息控制零件和刀具位移。要充分发挥数控机床的这一特点,必须在编程之前对工件进行工艺分析,根据具体条件选择经济、合理的工艺方案。下面简单介绍一下数控切削工艺的设计流程:
一、数控切削工艺工序划分
1、首先要熟读图样
分折零件图可知手柄轮廓是由一个圆锥台、一个柱面和三个圆弧连接曲面组成。确定工件坐标原点并汁算出每个折点的坐标以及曲线连接点的坐标。
2、按选择的刀具划分工序
以外圆右偏刀为主刀具,应尽可能完成所有部位,然后换切断刀车锥面和切断,并考虑切断刀的宽度。这样可以减少换刀次数压缩行程时间。
3、按粗、精工划分工序
若采用整个轮廓循环编程虽然简单,但前几个循环中的空程太多,不利于发挥数控切削的高效率。粗工切除大部分余量后,再将其表面精车一遍,以保证精度和表面粗糙度的要求。
4、合理选择切削用量
一般是在保证质量和刀具寿命的前提下,充分发挥机床性能和刀具切削性能,使切削效率最高、投入最低。粗工时多选用低的切削速度,较大的背吃刀量和进给量;精工时选用高的切削速度,较小的进给量。
二、数据编程注意事项
(1)依据工艺考虑进行编程,编程就是给出工步中的每一次走刀命令。首先确定工件的坐标原点,并计算出每个折折点的坐标以及曲线连接点的坐标。正确给出每一工步的起刀点,即某个部位时刀具的初始位置,起刀点的正确与否直接影响编程和表面轮廓的形成。
(2)按粗、精工和所选刀具划分工序编程,粗工去除大部分余量;精工提高表面质量,考虑切断刀的实际刀尖,编程时应考虑刀宽的影响。
(3)在编程中不能直接使刀具直达工件表面,刀具与工件表面在零接触下也不允许移动,这样可有效避免刀具与工件接触可能产生的碰撞,避免造成刀具划伤工件表面或刀具磨损。
(4)准确对刀,数控编程是以刀尖点为参考沿零件轮廓的运动轨迹。首先通过正确对刀,使刀尖坐标与工件原点坐标重合。只有这样才能保证刀具按编程运行后获得正确的零件轮廓。
(5)输入编程模拟仿真,仿真看到的是模拟刀尖按编程刻划出的轮廓轨迹。而在切削过程中切削刃对工件是否造成干涉,在仿真中很难反应出来。仿真轨迹正确,最后加工出的工件轮廓不一定就完整,也就是说仿真可检验编程是否正确,而不能把过程中的过切干涉现象全部反映出来。
三、切削刀具的选择
(1)目前常用的切削材料有高速钢和硬质合金。由于高速钢只能在较低温度下保持其切削性能,因此不宜用于高速切削。硬质合金比高速钢具有更好的耐热性和耐磨性,因此硬质合金材料刀具更适合切削。
(2)在对高粘性、高塑性的零件时,要求刀具具有较高的耐磨性、耐热性,并能在较高的温度下保持优良的切削、断屑性能,在保证刀具有足够强度的前提下,应选用较大的前角,减小被切削金属的塑性变形,降低切削力和切削温度,同时使硬化层深度减小。
(3)在刀具涂层的选择方面,宜选择硬度高、抗粘结性和韧性好的涂层材料。超细的涂层工艺提高刀片的耐磨性,涂层表面光滑,减少摩擦,减少积屑瘤的产生,适用于良好工况下不锈钢高速半精、精车削场合。
四、切削油的选择
由于高速切削工艺的加工性较差,对切削油的冷却、润滑、渗透及清洗性能有更高的要求,常用的切削油切削过程中能在金属表面形成高熔点硫化物,而且在高温下不易破坏,具有良好的润滑作用,并有一定的冷却效果,一般用于高难度不锈钢切削、钻孔、铰孔及攻丝等工艺。
‘叁’ 数控加工对零件图样进行工艺分析都有哪些内容
在数控工艺分析时,首先要对零件图样进行工艺分析,分析零件各加工部位的结构工艺性是否符合数控加工的特点,其主要内容包括:
1、零件图样尺寸标注应符合编程的方便
在数控加工图上,宜采用以同一基准引注尺寸或直接给出坐标尺寸。这种标注方法,既便于编程,也便于协调设计基准、工艺基准、检测基准与编程零点的设置和计算。
2、零件轮廓结构的几何元素条件应充分
在编程时要对构成零件轮廓的所有几何元素进行定义。在分析零件图时,要分析各种几何元素的条件是否充分,如果不充分,则无法对被加工的零件进行编程或造型。
3、零件所要求的加工精度、尺寸公差应能否得到保证
虽然数控机床加工精度很高,但对一些特殊情况,例如薄壁零件的加工,由于薄壁件的刚性较差,加工时产生的切削力及薄壁的弹性退让极易产生切削面的振动,使得薄壁厚度尺寸公差难以保证,其表面粗糙度也随之增大,根据实践经验,对于面积较大的薄壁,当其厚度小于3mm时,应在工艺上充分重视这一问题。
4、零件内轮廓和外形轮廓的几何类型和尺寸是否统一
在数控编程,如果零件的内轮廓与外轮廓几何类型相同或相似,考虑是否可以编在同一个程序,尽可能减少刀具规格和换刀次数,以减少辅助时间,提高加工效率。需要注意的是,刀具的直径常常受内轮廓圆弧半径R限制。
5、零件的工艺结构设计能否采用较大直径的刀具进行加工
采用较大直径铣刀来加工,可以减少刀具的走刀次数,提高刀具的刚性系统,不但加工效率得到提高,而且工件表面和底面的加工质量也相应的得到提高。
6、零件铣削面的槽底圆角半径或底板与缘板相交处的圆角半径r不宜太大
由于铣刀与铣削平面接触的最大直径d=D-2r,其中D为铣刀直径。当D一定时,圆角半径r(如图(1、所示、越大,铣刀端刃铣削平面的能力越差,效率也就越低,工艺性也越差。。当r大到一定程度时甚至必须用球头铣刀加工,这是应当避免的。当D越大而r越小,铣刀端刃铣削平面的面积就越大,加工平面的能力越强,铣削工艺性当然也越好。有时,铣削的底面面积较大,底部圆弧r也较大时,可以用两把r不同的铣刀分两次进行切削。
7、保证基准统一原则
若零件在铣削完一面后再重新安装铣削面的另一面,由于基准不统一,往往会因为零件重新安装而接不好刀,加工结束后正反两面上的轮廓位置及尺寸的不协调。因此,尽量利用零件本身具有的合适的孔或以零件轮廓的基准边或专门设置工艺孔(如在毛坯上增加工艺凸台或在后续工序要去除余量上设置基准孔、等作为定位基准,保证两次装夹加工后相对位置的准确性。
8、考虑零件的变形情况
当零件在数控铣削过程中有变形情况时,不但影响零件的加工质量,有时,还会出现蹦刀的现象。这时就应该考虑铣削的加工工艺问题,尽可能把粗、精加工分开或采用对称去余量的方法。当然也可以采用热处理的方法来解决。
‘肆’ 如何工艺分析
数控加工工艺方案设计的核心工作,必须在数控加工方案制定前完成。一个合格的编程人员对数控机床及其控制系统的功能及特点,以及影响数控加工的每个环节都要有一个清晰、全面的了解,这样才能避免由于工艺方案考虑不周而可能出现的产品质量问题,造成无谓的人力、物力等资源的浪费。全面合理的数控加工工艺分析是提高数控编程质量的重要保障。
在数控加工中,从零件的设计图纸到零件成品合格交付,不仅要考虑到数控程序的编制,还要考虑到诸如零件加工工艺路线的安排、加工机床的选择、切削刀具的选择、零件加工中的定位装夹等一系列因素的影响,在开始编程前,必须要对零件设计图纸和技术要求进行详细的数控加工工艺分析,以最终确定哪些是零件的技术关键,哪些是数控加工的难点,以及数控程序编制的难易程度。
零件工艺性分析也是数控规划的第一步,在此基础上,方可确定零件数控加工所需的数控机床、加工刀具、工艺装备、切削用量、数控加工工艺路线,从而获得最佳的加工工艺方案,最终满足零件工程图纸和有关技术文件的要求。
数控加工工艺流程图
1.数控加工工艺路线制定所需的原始资料
(1)零件设计图纸、技术资料,以及产品的装配图纸。
(2)零件的生产批量。
(3)零件数控加工所需的相关技术标准如企业标准和工艺文件。
(4)产品验收的质量标准。
(5)现有的生产条件和资料。工艺装备及专用设备的制造能力、加工设备和工艺装备的规格及性能、工人的技术水平。
2.毛坯状态分析
大多数零件设计图纸只定义了零件加工时的形状和大小,而没有指定原始毛坯材料的数据,包括毛料的类型、规格、形状、热处理状态以及硬度等。编程时,对毛料的深入了解是一个重要的开始,利用这些原始信息,有利于数控程序规划。
‘伍’ 零件加工工艺分析与数控程序设计的意义
能指明行业?不同行业其生产工艺也不同。从你提供的字里行间“加工”、“数控”看好像机械行业。该行业的零件加工工艺一般指机加工工艺,而数控程序仅是该工艺中的一个工步,是工艺规定所用数控机床加工时所设计的本工序的操作程序(电脑编程),是上下级关系。只有详细分析加工工艺对本工步的要求,才能正确设计本机床的数控机床电脑程序。
‘陆’ 数控加工工艺需要分析哪些主要内容
被加工零件的数控加工工艺性问题涉及面很广,下面结合编程的可能性和方便性提出一些必须分析和审查的主要内容。
1、尺寸标注应符合数控加工的特点。
在数控编程中,所有点、线、面的尺寸和位置都是以编程原点为基准的。因此零件图上最好直接给出坐标尺寸,或尽量以同一基准引注尺寸。
2、几何要素的条件应完整、准确
在程序编制中,编程人员必须充分掌握构成零件轮廓的几何要素参数及各几何要素间的关系。因为在自动编程时要对零件轮廓的所有几何元素进行定义,手工编程时要计算出每个节点的坐标,无论哪一点不明确或不确定,编程都无法进行。但由于零件设计人员在设计过程中考虑不周或被忽略,常常出现参数不全或不清楚,如圆弧与直线、圆弧与圆弧是相切还是相交或相离。所以在审查与分析图纸时,一定要仔细,发现问题及时与设计人员联系。
3、定位基准可靠
在数控加工中,加工工序往往较集中,以同一基准定位十分重要。因此往往需要设置一些辅助基准,或在毛坯上增加一些工艺凸台。
4、统一几何类型或尺寸
零件的外形、内腔最好采用统一的几何类型或尺寸,这样可以减少换刀次数,还可能应用控制程序或专用程序以缩短程序长度。零件的形状尽可能对称,便于利用数控机床的镜向加工功能来编程,以节省编程时间。
‘柒’ 简述数控加工工艺设计包括哪些主要内容
凯福公司在进行数控加工工艺设计时,一般应进行以下几方面的工作:数控加工工艺内容的选择; 数控加工工艺性分析; 数控加工工艺路线的设计。
一、数控加工工艺内容的选择
1、适于数控加工的内容
在选择时,一般可按下列顺序考虑:
(1)通用机床无法加工的内容应作为优先选择内容;
(2)通用机床难加工,质量也难以保证的内容应作为重点选择内容;
(3)通用机床加工效率低、工人手工操作劳动强度大的内容,可在数控机床尚存在富裕加工能力时选择。
2、不适于数控加工的内容
(1)占机调整时间长。如以毛坯的粗基准定位加工第一个精基准,需用专用工装协调的内容;
(2)加工部位分散,需要多次安装、设置原点。这时,采用数控加工很麻烦,效果不明显,可安排通用机床补加工;
(3)按某些特定的制造依据(如样板等)加工的型面轮廓。主要原因是获取数据困难,易于与检验依据发生矛盾,增加了程序编制的难度。
二、 数控加工工艺性分析
1、尺寸标注应符合数控加工的特点
2、几何要素的条件应完整、准确
3、定位基准可靠
4、统一几何类型及尺寸
三、数控加工工艺路线的设计
1、工序的划分
数控加工工序的划分一般可按下列方法进行:
(1)以一次安装、加工作为一道工序。
(2)以同一把刀具加工的内容划分工序。
(3)以加工部位划分工序。
(4)以粗、精加工划分工序。
2、顺序的安排
顺序安排一般应按以下原则进行:
(1)上道工序的加工不能影响下道工序的定位与夹紧,中间穿插有通用机床加工工序的也应综合考虑;
(2)先进行内腔加工,后进行外形加工;
(3)以相同定位、夹紧方式加工或用同一把刀具加工的工序,最好连续加工,以减少重复定位次数、换刀次数与挪动压板次数。
3、数控加工工艺与普通工序的衔接
‘捌’ 求齿轮轴的数控车削加工工艺分析与编程
齿轴加工工艺设计到的太多了,毛料下料 粗车 精车 滚齿 硬度处理(淬火,发黑,调制)表面光亮处理,有些还要拉槽,总之齿轴讲究的是内孔精度,齿精度,同心度,平行度,垂直度,在机加工行业中算是比较复杂的一种,不过做习惯了也就那样了。至于变成,齿轴的编程个人觉得比一般的接头编程要简单多,主要是走刀量和转速要配合好。
‘玖’ 工艺分析和数控编程
宏观的工艺分析就是说制造零件用什么方法 考虑时涉及的因素很多 比如键槽 技术要求高比如0.01mm即1道 可以用拉削和线切割 技术要求低呢 还可以用刨削 自己有哪种设备就优先选用 没有就外协
微观的比如说同一零件上要加工孔和外形 先做哪部分 再微观就是说加工外形时的刀具轨迹分析 如何切入冲击小线路最短少抬刀
‘拾’ 圆锥螺母套零件的数控工艺分析与编程
用CAD绘制零件图1张(附在目录之前),制定数控车削(或铣削)零件加工路线,写数控程序并用仿真软件进行仿真加工。2.撰写课程设计说明书一份,要求内容与设计过程相符,且格式要符合规定要求。