A. 如何通过python实现三次样条插值
spline函数可以实现三次样条插值 x = 0:10; y = sin(x); xx = 0:.25:10; yy = spline(x,y,xx); plot(x,y,'o',xx,yy) 另外fnplt csapi这两个函数也是三次样条插值函数,具体你可以help一下!
B. 自己写的拉格朗日插值法python,但是有错误,帮忙修改!
您好,一般地,若已知y=f(x)在互不相同 n+1 个点x0,x1,x2...,xn处的函数值y0,y1,y2...,yn( 即该函数过(x0,y0)(x1,y1)(x2,y2)...(xn,yn)这n个点),则可以考虑构造一个过这n+1 个点的、次数不超过n的多项式y=Pn(x),使其满足:
Pn(xk)=yk, k=0,1,2,...,n (*)
要估计任一点ξ,ξ≠xi,i=0,1,2,...,n,则可以用Pn(ξ)的值作为准确值f(ξ)的近似值,此方法叫做“插值法”。
称式(*)为插值条件(准则),含xi(i=0,1,...,n)的最小区间[a,b](a=min{x0,x1,...,xn},b=max{x0,x1,...,xn})
定理
满足插值条件的、次数不超过n的多项式是存在而且是唯一的。
C. python 拉格朗日插值 不能超过多少个值
拉格朗日插值Python代码实现
1. 数学原理
对某个多项式函数有已知的k+1个点,假设任意两个不同的都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:
直接编写程序,可以直接插值,并且得到对应的函数值。但是不能得到系数,也不能对其进行各项运算。
123456789101112defh(x,y,a):ans=0.0foriinrange(len(y)):t=y[i]forjinrange(len(y)):ifi !=j:t*=(a-x[j])/(x[i]-x[j])ans+=treturnansx=[1,0]y=[0,2]print(h(x,y,2))上述代码中,h(x,y,a)就是插值函数,直接调用就行。参数说明如下:
x,y分别是对应点的x值和y值。具体详解下解释。
a为想要取得的函数的值。
事实上,最简单的拉格朗日插值就是两点式得到的一条直线。
例如:
p点(1,0)q点(0,2)
这两个点决定了一条直线,所以当x=2的时候,y应该是-2
该代码就是利用这两个点插值,然后a作为x=2调用函数验证的。
3. 引用库
3.1 库的安装
主要依赖与 scipy。官方网站见:https://www.scipy.org/install.html
安装的方法很简单,就是使用pip install scipy 如果失败,则将whl文件下载到本地再利用命令进行安装。
可能如果没有安装numpy
3.2 库的使用
from scipy.interplotate import lagrange
直接调用lagrange(x,y)这个函数即可,返回 一个对象。
参数x,y分别是对应各个点的x值和y值。
例如:(1,2) (3,5) (5,9)这三个点,作为函数输入应该这么写:
x=[1,3,5]
y =[2, 5, 9]
a=lagrange(x,y)
直接输出该对象,就能看到插值的函数。
利用该对象,能得到很多特性。具体参见:https://docs.scipy.org/doc/numpy-1.12.0/reference/generated/numpy.poly1d.html
a.order得到阶
a[]得到系数
a()得到对应函数值
此外可以对其进行加减乘除运算
3.3 代码实现
1234567结果是:
<class 'numpy.lib.polynomial.poly1d'> 4
4 3 2
0.5472 x - 7.306 x + 30.65 x - 47.03 x + 28.13
5.0 7.0 10.0
28.1333333333 30.6527777778 -7.30555555556
解释:
<class 'numpy.lib.polynomial.poly1d'> 4
这一行是输出a的类型,以及最高次幂。
4 3 2
0.5472 x - 7.306 x + 30.65 x - 47.03 x + 28.13
第二行和第三行就是插值的结果,显示出的函数。
第二行的数字是对应下午的x的幂,如果对应不齐,则是排版问题。
5.0 7.0 10.0
第四行是代入的x值,得到的结果。
也就是说,用小括号f(x)的这种形式,可以直接得到计算结果。
28.1333333333 30.6527777778 -7.30555555556
D. python 线性插值
不知道有没有,可能python数学相关的库里会有吧
不过你写的也不对啊,取3个值,应该是4均分。
>>>defjunfen(start,end,num):
k=(end-start)/(num+1)
returnset([start+item*kforiteminrange(1,num+1)])
E. python怎样对矩阵进行插值
首先需要创建数组才能对其进行其它操作。
我们可以通过给array函数传递Python的序列对象创建数组,如果传递的是多层嵌套的序列,将创建多维数组(下例中的变量c):
>>> a = np.array([1, 2, 3, 4])
>>> b = np.array((5, 6, 7, 8))
>>> c = np.array([[1, 2, 3, 4],[4, 5, 6, 7], [7, 8, 9, 10]])
>>> b
array([5, 6, 7, 8])
>>> c
array([[1, 2, 3, 4],
[4, 5, 6, 7],
[7, 8, 9, 10]])
>>> c.dtype
dtype('int32')
数组的大小可以通过其shape属性获得:
>>> a.shape
(4,)
>>> c.shape
F. 在Python程序中的插值误差问题,怎么解决
代码如下所示:import numpy as npfrom matplotlib import pyplot as pltfrom scipy.interpolate import interp1dx=np.linspace(0,10*np.pi,num=20)y=np.sin(x)f1=interp1d(x,y,kind='linear')#线性插值f2=interp1d(x,y,kind='cubic')#三次样条插值x_pred=np.linspace(0,10*np.pi,num=1000)y1=f1(x_pred)y2=f2(x_pred)plt.figure()plt.plot(x_pred,y1,'r',label='linear')plt.plot(x,f1(x),'b--','origin')plt.legend()plt.show()plt.figure()plt.plot(x_pred,y2,'b--',label='cubic')plt.legend()plt.show()
G. 双线性插值法原理 python实现
码字不易,如果此文对你有所帮助,请帮忙点赞,感谢!
一. 双线性插值法原理:
① 何为线性插值?
插值就是在两个数之间插入一个数,线性插值原理图如下:
② 各种插值法:
插值法的第一步都是相同的,计算目标图(dstImage)的坐标点对应原图(srcImage)中哪个坐标点来填充,计算公式为:
srcX = dstX * (srcWidth/dstWidth)
srcY = dstY * (srcHeight/dstHeight)
(dstX,dstY)表示目标图像的某个坐标点,(srcX,srcY)表示与之对应的原图像的坐标点。srcWidth/dstWidth 和 srcHeight/dstHeight 分别表示宽和高的放缩比。
那么问题来了,通过这个公式算出来的 srcX, scrY 有可能是小数,但是原图像坐标点是不存在小数的,都是整数,得想办法把它转换成整数才行。
不同插值法的区别就体现在 srcX, scrY 是小数时,怎么将其变成整数去取原图像中的像素值。
最近邻插值(Nearest-neighborInterpolation):看名字就很直白,四舍五入选取最接近的整数。这样的做法会导致像素变化不连续,在目标图像中产生锯齿边缘。
双线性插值(Bilinear Interpolation):双线性就是利用与坐标轴平行的两条直线去把小数坐标分解到相邻的四个整数坐标点。权重与距离成反比。
双三次插值(Bicubic Interpolation):与双线性插值类似,只不过用了相邻的16个点。但是需要注意的是,前面两种方法能保证两个方向的坐标权重和为1,但是双三次插值不能保证这点,所以可能出现像素值越界的情况,需要截断。
③ 双线性插值算法原理
假如我们想得到未知函数 f 在点 P = (x, y) 的值,假设我们已知函数 f 在 Q11 = (x1, y1)、Q12 = (x1, y2), Q21 = (x2, y1) 以及 Q22 = (x2, y2) 四个点的值。最常见的情况,f就是一个像素点的像素值。首先在 x 方向进行线性插值,然后再在 y 方向上进行线性插值,最终得到双线性插值的结果。
④ 举例说明
二. python实现灰度图像双线性插值算法:
灰度图像双线性插值放大缩小
import numpy as np
import math
import cv2
def double_linear(input_signal, zoom_multiples):
'''
双线性插值
:param input_signal: 输入图像
:param zoom_multiples: 放大倍数
:return: 双线性插值后的图像
'''
input_signal_cp = np.(input_signal) # 输入图像的副本
input_row, input_col = input_signal_cp.shape # 输入图像的尺寸(行、列)
# 输出图像的尺寸
output_row = int(input_row * zoom_multiples)
output_col = int(input_col * zoom_multiples)
output_signal = np.zeros((output_row, output_col)) # 输出图片
for i in range(output_row):
for j in range(output_col):
# 输出图片中坐标 (i,j)对应至输入图片中的最近的四个点点(x1,y1)(x2, y2),(x3, y3),(x4,y4)的均值
temp_x = i / output_row * input_row
temp_y = j / output_col * input_col
x1 = int(temp_x)
y1 = int(temp_y)
x2 = x1
y2 = y1 + 1
x3 = x1 + 1
y3 = y1
x4 = x1 + 1
y4 = y1 + 1
u = temp_x - x1
v = temp_y - y1
# 防止越界
if x4 >= input_row:
x4 = input_row - 1
x2 = x4
x1 = x4 - 1
x3 = x4 - 1
if y4 >= input_col:
y4 = input_col - 1
y3 = y4
y1 = y4 - 1
y2 = y4 - 1
# 插值
output_signal[i, j] = (1-u)*(1-v)*int(input_signal_cp[x1, y1]) + (1-u)*v*int(input_signal_cp[x2, y2]) + u*(1-v)*int(input_signal_cp[x3, y3]) + u*v*int(input_signal_cp[x4, y4])
return output_signal
# Read image
img = cv2.imread("../paojie_g.jpg",0).astype(np.float)
out = double_linear(img,2).astype(np.uint8)
# Save result
cv2.imshow("result", out)
cv2.imwrite("out.jpg", out)
cv2.waitKey(0)
cv2.destroyAllWindows()
三. 灰度图像双线性插值实验结果:
四. 彩色图像双线性插值python实现
def BiLinear_interpolation(img,dstH,dstW):
scrH,scrW,_=img.shape
img=np.pad(img,((0,1),(0,1),(0,0)),'constant')
retimg=np.zeros((dstH,dstW,3),dtype=np.uint8)
for i in range(dstH-1):
for j in range(dstW-1):
scrx=(i+1)*(scrH/dstH)
scry=(j+1)*(scrW/dstW)
x=math.floor(scrx)
y=math.floor(scry)
u=scrx-x
v=scry-y
retimg[i,j]=(1-u)*(1-v)*img[x,y]+u*(1-v)*img[x+1,y]+(1-u)*v*img[x,y+1]+u*v*img[x+1,y+1]
return retimg
im_path='../paojie.jpg'
image=np.array(Image.open(im_path))
image2=BiLinear_interpolation(image,image.shape[0]*2,image.shape[1]*2)
image2=Image.fromarray(image2.astype('uint8')).convert('RGB')
image2.save('3.png')
五. 彩色图像双线性插值实验结果:
六. 最近邻插值算法和双三次插值算法可参考:
① 最近邻插值算法: https://www.cnblogs.com/wojianxin/p/12515061.html
https://blog.csdn.net/Ibelievesunshine/article/details/104936006
② 双三次插值算法: https://www.cnblogs.com/wojianxin/p/12516762.html
https://blog.csdn.net/Ibelievesunshine/article/details/104942406
七. 参考内容:
https://www.cnblogs.com/wojianxin/p/12515061.html
https://blog.csdn.net/Ibelievesunshine/article/details/104939936
H. 想用python来求解牛顿插值问题,编了一段程序,其中有些错误看不出来,恳请大佬指出错误,代码如下
importmatplotlib.pyplotasplt
frompylabimportmpl
importmath
"""
牛顿插值法
插值的函数表为
xi-28.9,-12.2,4.4,21.1,37.8
f(xi)2.2,3.9,6.6,10.3,15.4
"""
x=[-28.9,-12.2,4.4,21.1,37.8]
y=[2.2,3.9,6.6,10.3,15.4]
"""计算4次差商的值"""
defFour_time_difference_quotient(x,y):
i=0#i记录计算差商的次数
quotient=[0,0,0,0,0,]
whilei<4:
j=4
whilej>i:
ifi==0:
quotient[j]=((y[j]-y[j-1])/(x[j]-x[j-1]))
else:
quotient[j]=(quotient[j]-quotient[j-1])/(x[j]-x[j-1-i])
j-=1
i+=1
returnquotient;
deffunction(data):
returnx[0]+parameters[1]*(data-0.4)+parameters[2]*(data-0.4)*(data-0.55)+
parameters[3]*(data-0.4)*(data-0.55)*(data-0.65)
+parameters[4]*(data-0.4)*(data-0.55)*(data-0.80)
"""计算插值多项式的值和相应的误差"""
defcalculate_data(x,parameters):
returnData=[];
fordatainx:
returnData.append(function(data))
returnreturnData
"""画函数的图像
newData为曲线拟合后的曲线
"""
defdraw(newData):
plt.scatter(x,y,label="离散数据",color="red")
plt.plot(x,newData,label="牛顿插值拟合曲线",color="black")
plt.scatter(0.596,function(0.596),label="预测函数点",color="blue")
plt.title("牛顿插值法")
mpl.rcParams['font.sans-serif']=['SimHei']
mpl.rcParams['axes.unicode_minus']=False
plt.legend(loc="upperleft")
plt.show()
parameters=Four_time_difference_quotient(x,y)
yuanzu=calculate_data(x,parameters)
draw(yuanzu)