导航:首页 > 编程语言 > python矩阵可视化

python矩阵可视化

发布时间:2022-09-12 05:28:39

A. python中数据可视化的两个库!

1. Matplotlib:是Python中众多数据可视化库的鼻祖,其设计风格与20世纪80年代的商业化程序语言MATLAB十分相似,具有很多强大且复杂的可视化功能;还包含了多种类型的API,可以采用多种方式绘制图标并对图标进行定制。
2. Seaborn:是基于Matplotlib进行高级封装的可视化库,支持交互式界面,使绘制图表功能变得简单,且图表的色彩更具吸引力。
3. ggplot:是基于Matplotlib并旨在以简单方式提高Matplotlib可视化感染力的库,采用叠加图层的形式绘制图形,比如先绘制坐标轴所在的图层,再绘制点所在的图层,最后绘制线所在的图层,但其并不适用于个性化定制图形。
4. Boken:是一个交互式的可视化库,支持使用Web浏览器展示,可使用快速简单的方式将大型数据集转换成高性能的、可交互的、结构简单的图表。
5. Pygal:是一个可缩放矢量图标库,用于生成可在浏览器中打开的SVG格式的图表,这种图表能够在不同比例的屏幕上自动缩放,方便用户交互。
6. Pyecharts:是一个生成ECharts的库,生成的ECharts凭借良好的交互性、精巧的设计得到了众多开发者的认可。

B. python处理图片数据

目录

1.机器是如何存储图像的?

2.在Python中读取图像数据

3.从图像数据中提取特征的方法#1:灰度像素值特征

4.从图像数据中提取特征的方法#2:通道的平均像素值

5.从图像数据中提取特征的方法#3:提取边缘
是一张数字8的图像,仔细观察就会发现,图像是由小方格组成的。这些小方格被称为像素。

但是要注意,人们是以视觉的形式观察图像的,可以轻松区分边缘和颜色,从而识别图片中的内容。然而机器很难做到这一点,它们以数字的形式存储图像。请看下图:

机器以数字矩阵的形式储存图像,矩阵大小取决于任意给定图像的像素数。

假设图像的尺寸为180 x 200或n x m,这些尺寸基本上是图像中的像素数(高x宽)。

这些数字或像素值表示像素的强度或亮度,较小的数字(接近0)表示黑色,较大的数字(接近255)表示白色。通过分析下面的图像,读者就会弄懂到目前为止所学到的知识。

下图的尺寸为22 x 16,读者可以通过计算像素数来验证:

图片源于机器学习应用课程

刚才讨论的例子是黑白图像,如果是生活中更为普遍的彩色呢?你是否认为彩色图像也以2D矩阵的形式存储?

彩色图像通常由多种颜色组成,几乎所有颜色都可以从三原色(红色,绿色和蓝色)生成。

因此,如果是彩色图像,则要用到三个矩阵(或通道)——红、绿、蓝。每个矩阵值介于0到255之间,表示该像素的颜色强度。观察下图来理解这个概念:

图片源于机器学习应用课程

左边有一幅彩色图像(人类可以看到),而在右边,红绿蓝三个颜色通道对应三个矩阵,叠加三个通道以形成彩色图像。

请注意,由于原始矩阵非常大且可视化难度较高,因此这些不是给定图像的原始像素值。此外,还可以用各种其他的格式来存储图像,RGB是最受欢迎的,所以笔者放到这里。读者可以在此处阅读更多关于其他流行格式的信息。

用Python读取图像数据

下面开始将理论知识付诸实践。启动Python并加载图像以观察矩阵:

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)

#checking image shape
image.shape, image

(28,28)

矩阵有784个值,而且这只是整个矩阵的一小部分。用一个LIVE编码窗口,不用离开本文就可以运行上述所有代码并查看结果。

下面来深入探讨本文背后的核心思想,并探索使用像素值作为特征的各种方法。

方法#1:灰度像素值特征

从图像创建特征最简单的方法就是将原始的像素用作单独的特征。

考虑相同的示例,就是上面那张图(数字‘8’),图像尺寸为28×28。

能猜出这张图片的特征数量吗?答案是与像素数相同!也就是有784个。

那么问题来了,如何安排这784个像素作为特征呢?这样,可以简单地依次追加每个像素值从而生成特征向量。如下图所示:

下面来用Python绘制图像,并为该图像创建这些特征:

image = imread('puppy.jpeg', as_gray=True)

image.shape, imshow(image)

(650,450)

该图像尺寸为650×450,因此特征数量应为297,000。可以使用NumPy中的reshape函数生成,在其中指定图像尺寸:

#pixel features

features = np.reshape(image, (660*450))

features.shape, features

(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])

这里就得到了特征——长度为297,000的一维数组。很简单吧?在实时编码窗口中尝试使用此方法提取特征。

但结果只有一个通道或灰度图像,对于彩色图像是否也可以这样呢?来看看吧!

方法#2:通道的平均像素值

在读取上一节中的图像时,设置了参数‘as_gray = True’,因此在图像中只有一个通道,可以轻松附加像素值。下面删除参数并再次加载图像:

image = imread('puppy.jpeg')
image.shape

(660, 450, 3)

这次,图像尺寸为(660,450,3),其中3为通道数量。可以像之前一样继续创建特征,此时特征数量将是660*450*3 = 891,000。

或者,可以使用另一种方法:

生成一个新矩阵,这个矩阵具有来自三个通道的像素平均值,而不是分别使用三个通道中的像素值。

下图可以让读者更清楚地了解这一思路:

这样一来,特征数量保持不变,并且还能考虑来自图像全部三个通道的像素值。

image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape

(660, 450)

现有一个尺寸为(660×450×3)的三维矩阵,其中660为高度,450为宽度,3是通道数。为获取平均像素值,要使用for循环:

for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)

新矩阵具有相同的高度和宽度,但只有一个通道。现在,可以按照与上一节相同的步骤进行操作。依次附加像素值以获得一维数组:

features = np.reshape(feature_matrix, (660*450))
features.shape

(297000,)

方法#3:提取边缘特征

请思考,在下图中,如何识别其中存在的对象:

识别出图中的对象很容易——狗、汽车、还有猫,那么在区分的时候要考虑哪些特征呢?形状是一个重要因素,其次是颜色,或者大小。如果机器也能像这样识别形状会怎么样?

类似的想法是提取边缘作为特征并将其作为模型的输入。稍微考虑一下,要如何识别图像中的边缘呢?边缘一般都是颜色急剧变化的地方,请看下图:

笔者在这里突出了两个边缘。这两处边缘之所以可以被识别是因为在图中,可以分别看到颜色从白色变为棕色,或者由棕色变为黑色。如你所知,图像以数字的形式表示,因此就要寻找哪些像素值发生了剧烈变化。

假设图像矩阵如下:

图片源于机器学习应用课程

该像素两侧的像素值差异很大,于是可以得出结论,该像素处存在显着的转变,因此其为边缘。现在问题又来了,是否一定要手动执行此步骤?

当然不!有各种可用于突出显示图像边缘的内核,刚才讨论的方法也可以使用Prewitt内核(在x方向上)来实现。以下是Prewitt内核:

获取所选像素周围的值,并将其与所选内核(Prewitt内核)相乘,然后可以添加结果值以获得最终值。由于±1已经分别存在于两列之中,因此添加这些值就相当于获取差异。

还有其他各种内核,下面是四种最常用的内核:

图片源于机器学习应用课程

现在回到笔记本,为同一图像生成边缘特征:

#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline

#reading the image
image = imread('puppy.jpeg',as_gray=True)

#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)

imshow(edges_prewitt_vertical, cmap='gray')

C. python matplotlib 图像可视化

Python画图之总结待整理

https://morvanzhou.github.io/tutorials/data-manipulation/plt/
http://blog.sciencenet.cn/blog-1408284-850983.html
http://www.cnblogs.com/DHUtoBUAA/p/6619099.html
http://blog.csdn.net/wuguangbin1230/article/details/72858612
http://blog.sciencenet.cn/blog-251664-800766.html
http://blog.csdn.net/wuguangbin1230/article/details/72858612
http://www.jianshu.com/p/0a81b57bbb8c
https://pythonprogramming.net/

http://blog.csdn.net/haoji007/article/details/52063168

Python Data Visualizations

Seaborn 库: https://seaborn.pydata.org/

Python Seaborn 教程: http://elitedatascience.com/python-seaborn-tutorial

matplotlib: plotting with Python
matplotlib: plotting with Python-github

python-data-visualization-course
Interactive Web Plotting for Python
Interactive Web Plotting for Python-github

https://morvanzhou.github.io/tutorials/data-manipulation/plt/3-3-contours/
https://github.com/MorvanZhou/tutorials/tree/master/matplotlibTUT

https://github.com/jiandanjinxin/tf-dev-summit-tensorboard-tutorial
https://github.com/jiandanjinxin/tensorflow-mnist-tutorial

CSDN-markdown编辑器语法——字体、字号与颜色

%matplotlib inline
%matplotlib notebook

Need to use either

or

Only one in each notebook! using inline will just sent png images to browser, using notebook will provide interactivity and allow updating old figures. With notebook you need to make sure to create a new figure before plotting, otherwise the last one will be updated!

还有简便的 plt.close('all') 关闭所有图,不用管 fig 号码

Some plots from these tutorials:

调整名字和间隔

设置不同名字和位置

调整坐标轴

参数loc='upper right'
表示图例将添加在图中的右上角.

调整位置和名称

最后我们得到带有图例信息的图片.

移动坐标

然后我们挪动坐标轴的位置.

然后标注出点(x0, y0)的位置信息. 用plt.plot([x0, x0,], [0, y0,], 'k--', linewidth=2.5)
画出一条垂直于x轴的虚线.

添加注释 annotate
接下来我们就对(x0, y0)这个点进行标注.

其中参数xycoords='data'
是说基于数据的值来选位置,xytext=(+30, -30)
和textcoords='offset points'
对于标注位置的描述 和 xy 偏差值,arrowprops
是对图中箭头类型的一些设置.

添加注释 text

其中-3.7, 3,
是选取text的位置, 空格需要用到转字符
,fontdict
设置文本字体.

生成图形
当图片中的内容较多,相互遮盖时,我们可以通过设置相关内容的透明度来使图片更易于观察,也即是通过本节中的bbox
参数设置来调节图像信息.
首先参考之前的例子, 我们先绘制图像基本信息:

调整坐标

然后对被遮挡的图像调节相关透明度,本例中设置 x轴 和 y轴 的刻度数字进行透明度设置

其中label.set_fontsize(12)重新调节字体大小,bbox设置目的内容的透明度相关参,facecolor调节 box 前景色,edgecolor 设置边框, 本处设置边框为无,alpha设置透明度. 最终结果如下:

散点图
首先,先引入matplotlib.pyplot简写作plt,再引入模块numpy用来产生一些随机数据。生成1024个呈标准正态分布的二维数据组 (平均数是0,方差为1) 作为一个数据集,并图像化这个数据集。每一个点的颜色值用T来表示:

数据集生成完毕,现在来用scatterplot这个点集,鼠标点上去,可以看到这个函数的各个parameter的描述,如下图:
输入X和Y作为location,size=75,颜色为T,color map用默认值,透明度alpha 为 50%。 x轴显示范围定位(-1.5,1.5),并用xtick()函数来隐藏x坐标轴,y轴同理:

今天的柱状图分成上下两部分,每一个柱体上都有相应的数值标注,并且取消坐标轴的显示。
生成基本图形
向上向下分别生成12个数据,X为 0 到 11 的整数 ,Y是相应的均匀分布的随机数据。使用的函数是plt.bar
,参数为X和Y:

这样我们就生成了下图所示的柱状图基本框架:

现在的结果呈现:

接下来我们用函数plt.text分别在柱体上方(下方)加上数值,用%.2f保留两位小数,横向居中对齐ha='center',纵向底部(顶部)对齐va='bottom':

最终的结果就像开始一样:

画等高线
数据集即三维点 (x,y) 和对应的高度值,共有256个点。高度值使用一个 height function f(x,y) 生成。 x, y 分别是在区间 [-3,3] 中均匀分布的256个值,并用meshgrid在二维平面中将每一个x和每一个y分别对应起来,编织成栅格:

接下来进行颜色填充。使用函数plt.contourf把颜色加进去,fill, 位置参数分别为:X, Y, f(X,Y)。透明度0.75,并将 f(X,Y) 的值对应到color map的暖色组中寻找对应颜色。8代表等高线的个数。

接下来进行等高线绘制。使用plt.contour函数划线。位置参数为:X, Y, f(X,Y)。颜色选黑色,线条宽度选0.5。现在的结果如下图所示,只有颜色和线条,还没有数值Label:

添加高度数字
其中,8代表等高线的密集程度,这里被分为10个部分。如果是0,则图像被一分为二。
最后加入Label,inline控制是否将Label画在线里面,字体大小为10。并将坐标轴隐藏:

随机矩阵画图

这一节我们讲解怎样在matplotlib中打印出图像。这里我们打印出的是纯粹的数字,而非自然图像。 我们今天用这样 3x3 的 2D-array 来表示点的颜色,每一个点就是一个pixel。

colorbar
下面我们添加一个colorbar ,其中我们添加一个shrink参数,使colorbar的长度变短为原来的92%:

3D
首先在进行 3D Plot 时除了导入 matplotlib ,还要额外添加一个模块,即 Axes 3D 3D 坐标轴显示:

之后要先定义一个图像窗口,在窗口上添加3D坐标轴,显示成下图:

接下来给进 X 和 Y 值,并将 X 和 Y 编织成栅格。每一个(X, Y)点对应的高度值我们用下面这个函数来计算。

其中,rstride 和 cstride 分别代表 row 和 column 的跨度。
下面两个图分别是跨度为1 和 5 的效果:

投影

下面添加 XY 平面的等高线:

如果 zdir 选择了x,那么效果将会是对于 XZ 平面的投影,效果如下

D. Python中除了matplotlib外还有哪些数据可视化的库

数据可视化是展示数据、理解数据的有效手段,常用的Python数据可视化库如下:
1.Matplotlib:第一个Python可视化库,有许多别的程序库都是建立在其基础上或者直接调用该库,可以很方便地得到数据的大致信息,功能非常强大,但也非常复杂。
2.Seaborn:利用Matplotlib,用简洁的代码来制作好看的图表,与Matplotlib最大的区别为默认绘图风格和色彩搭配都具有现代美感。
3.ggplot:基于R的一个作图库的ggplot2,同时利用了源于《图像语法》中的概念,允许叠加不同的图层来完成一幅图,并不适用于制作非常个性化的图像,为操作的简洁度而牺牲了图像的复杂度。
4.Bokeh:与ggplot很相似,但与ggplot不同之处为它完全基于Python而不是从R处引用。长处在于能用于制作可交互、可直接用于网络的图表。图表可以输出为JSON对象、HTML文档或者可交互的网络应用。
5.Plotly:可以通过Python notebook使用,与bokeh一样致力于交互图表的制作,但提供在别的库中几乎没有的几种图表类型,如等值线图、树形图和三维图表。
6.pygal:与Bokeh和Plotly一样,提供可直接嵌入网络浏览器的可交互图像。与其他两者的主要区别在于可将图表输出为SVG格式,所有的图表都被封装成方法,且默认的风格也很漂亮,用几行代码就可以很容易地制作出漂亮的图表。
7.geoplotlib:用于制作地图和地理相关数据的工具箱。可用来制作多种地图,比如等值区域图、热度图、点密度图等,必须安装Pyglet方可使用。
8.missingno:用图像的方式快速评估数据缺失的情况,可根据数据的完整度对数据进行排序或过滤,或者根据热度图或树状图对数据进行修正。

E. python如何讲一个矩阵画成RGB图像

你可以用scipy包的misc.imsave函数,下面是示例代码

随机生成一个600X800X3的矩阵,然后写入图片

importnumpyasnp
fromscipy.miscimportimsave

x=np.random.random((600,800,3))
imsave('meelo.jpg',x)

F. python中获取的数据为矩阵形式,如何在python以实时的形式绘制出动态图

你好,下面是一个画动态图的例子。
import matplotlib.pyplot as plt
fig, ax = plt.subplots()
y1 = []
for i in range(50):
y1.append(i) # 每迭代一次,将i放入y1中画出来
ax.cla() # 清除键
ax.bar(y1, label='test', height=y1, width=0.3)
ax.legend()
plt.pause(0.1)

G. 如何使用python表示矩阵

使用python表示矩阵的方法:

使用“import numpy”语句导入numpy包。用numpy包的array函数创建一个二维数组,这个二维数组就表示矩阵

示例代码如下:

执行结果如下:

H. python"高维数据"可视化用什么库

常见的Python可视化库有哪些?
Matplotlib
Matplotlib是一个Python 2维绘图库,已经成为Python中公认的数据可视化工具,通过Matplotlib你可以很轻松地画一些或简单或复杂地图形,几行代码即可生成线图、直方图、功率谱、条形图、错误图、散点图等等。

Seaborn
Seaborn是基于Mtplotlib产生的一个模块,专攻于统计可视化,可以和pandas进行无缝链接,使初学者更容易上手。相对于Matplotlib,Seaborn语法更简洁,两者关系类似于NumPy、和Pandas之间的关系。

HoloViews
HoloViews是一个开源的Python库,可以用非常少的代码行中完成数据分析和可视化,除了默认的Matplotlib后端外,还添加了一个Bokeh后端。Bokeh提供了一个强大的平台,通过结合Bokeh提供的交互式小部件,可以使用HTML5 canvas和WebGL快速生成交互性和高维可视化,非常适合于数据的交互式探索。

Altair
Altair是Python的一个公认的统计可视化库,它的API简单、友好、一致,并建立在强大的vega-lite(交互式图形语法)之上。Altair API不包含实际的可视化呈现代码,而是按照vega-lite规范发出JSON数据结构。由此产生的数据可以在用户界面中呈现,这种优雅的简单性产生了漂亮且有效的可视化效果,且只需很少的代码。

ggplot
ggplot是基于R的ggplot2和图形语法的Python的绘图系统,实现了更少的代码绘制更专业的图形。
它使用一个高级且富有表现力的API来实现线,点等元素的添加,颜色的更改等不同类型的可视化组件的组合或添加,而不需要重复使用相同的代码,然而这对那些试图进行高度定制的的来说,ggplot并不是最好的选择,尽管它也可以制作一些非常复杂、好看的图形。

Bokeh
Bokeh是一个Python交互式可视化库,支持现代化Web浏览器展示。它提供风格优雅、简洁的D3.js的图形化样式,并将此功能扩展到高性能交互的数据集,数据流上。使用Bokeh可以快速便捷地创建交互式绘图、仪表板和数据应用程序等。
Bokeh能与NumPy、Pandas,Blaze等大部分数组或表格式的数据结构完美结合。

I. 【Python基础】python数据分析需要哪些库

1.Numpy库
是Python开源的数值计算扩展工具,提供了Python对多维数组的支持,能够支持高级的维度数组与矩阵运算。此外,针对数组运算也提供了大量的数学函数库,Numpy是大部分Python科学计算的基础,具有很多功能。
2.Pandas库
是一个基于Numpy的数据分析包,为了解决数据分析任务而创建的。Pandas中纳入了大量库和标准的数据模型,提供了高效地操作大型数据集所需要的函数和方法,使用户能快速便捷地处理数据。
3.Matplotlib库
是一个用在Python中绘制数组的2D图形库,虽然它起源于模仿MATLAB图形命令,但它独立于MATLAB,可以通过Pythonic和面向对象的方式使用,是Python中最出色的绘图库。主要用纯Python语言编写的,它大量使用Numpy和其他扩展代码,即使对大型数组也能提供良好的性能。
4.Seaborn库
是Python中基于Matplotlib的数据可视化工具,提供了很多高层封装的函数,帮助数据分析人员快速绘制美观的数据图形,从而避免了许多额外的参数配置问题。
5.NLTK库
被称为使用Python进行教学和计算语言学工作的最佳工具,以及用自然语言进行游戏的神奇图书馆。NLTK是一个领先的平台,用于构建使用人类语言数据的Python程序,它为超过50个语料库和词汇资源提供了易于使用的接口,还提供了一套文本处理库,用于分类、标记化、词干化、解析和语义推理、NLP库的包装器和一个活跃的讨论社区。

J. python 如何实现将二维数组可视化

可以用tkinter画图实现 但要一些坐标计算

阅读全文

与python矩阵可视化相关的资料

热点内容
压缩因子定义 浏览:968
cd命令进不了c盘怎么办 浏览:214
药业公司招程序员吗 浏览:974
毛选pdf 浏览:659
linuxexecl函数 浏览:727
程序员异地恋结果 浏览:374
剖切的命令 浏览:229
干什么可以赚钱开我的世界服务器 浏览:290
php备案号 浏览:990
php视频水印 浏览:167
怎么追程序员的女生 浏览:487
空调外压缩机电容 浏览:79
怎么将安卓变成win 浏览:459
手机文件管理在哪儿新建文件夹 浏览:724
加密ts视频怎么合并 浏览:775
php如何写app接口 浏览:804
宇宙的琴弦pdf 浏览:396
js项目提成计算器程序员 浏览:944
pdf光子 浏览:834
自拍软件文件夹名称大全 浏览:328