直接写人家的算法实现算剽窃。
但是你可以利用该算法解决一个实际问题,这个解决实际问题的软件是可以申请软着的。
Ⅱ 硕士论文 可以用python实现吗
自动的概念比较宽泛。是指自动查全IEEE站的论文并自动下载,还是提供一个URL然后自动下载页面内的论文PDF并且提取元数据,还是给关键字自动下载搜索结果列表的论文?你需要自己先明确自己的需求,这些“自动”实现的难度是不一样的。听你的意思是,你所在的网络环境应该是能够下载IEEE的PDF格式论文吧,要注意的是如果批量下载大量论文的话,可能会被屏蔽C段地址造成别人也无法访问哦。
Python是可以的,可以自己从urllib的基础开始,也可以用模拟浏览器,也有scrapy这样的框架。总之,技术上是可行的。
如果只是写论文整理文献,可以学习使用Zotero,可以很方便的自动下载页面内的论文并生成元数据,引用和批注都很方便,除了IEEE的网站也支持其他非常多的网站类型。
Ⅲ auc 论文里的 怎么计算 python svm
利用Python画ROC曲线,以及AUC值的计算\
前言
ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣。这篇文章将先简单的介绍ROC和AUC,而后用实例演示如何python作出ROC曲线图以及计算AUC。
AUC介绍
AUC(Area Under Curve)是机器学习二分类模型中非常常用的评估指标,相比于F1-Score对项目的不平衡有更大的容忍性,目前常见的机器学习库中(比如scikit-learn)一般也都是集成该指标的计算,但是有时候模型是单独的或者自己编写的,此时想要评估训练模型的好坏就得自己搞一个AUC计算模块,本文在查询资料时发现libsvm-tools有一个非常通俗易懂的auc计算,因此抠出来用作日后之用。
AUC计算
AUC的计算分为下面三个步骤:
1、计算数据的准备,如果模型训练时只有训练集的话一般使用交叉验证的方式来计算,如果有评估集(evaluate)一般就可以直接计算了,数据的格式一般就是需要预测得分以及其目标类别(注意是目标类别,不是预测得到的类别)
2、根据阈值划分得到横(X:False Positive Rate)以及纵(Y:True Positive Rate)点
3、将坐标点连成曲线之后计算其曲线下面积,就是AUC的值
直接上python代码
#! -*- coding=utf-8 -*-
import pylab as pl
from math import log,exp,sqrt
evaluate_result="you file path"
db = [] #[score,nonclk,clk]
pos, neg = 0, 0
with open(evaluate_result,'r') as fs:
for line in fs:
nonclk,clk,score = line.strip().split('\t')
nonclk = int(nonclk)
clk = int(clk)
score = float(score)
db.append([score,nonclk,clk])
pos += clk
neg += nonclk
db = sorted(db, key=lambda x:x[0], reverse=True)
#计算ROC坐标点
xy_arr = []
tp, fp = 0., 0.
for i in range(len(db)):
tp += db[i][2]
fp += db[i][1]
xy_arr.append([fp/neg,tp/pos])
#计算曲线下面积
auc = 0.
prev_x = 0
for x,y in xy_arr:
if x != prev_x:
auc += (x - prev_x) * y
prev_x = x
print "the auc is %s."%auc
x = [_v[0] for _v in xy_arr]
y = [_v[1] for _v in xy_arr]
pl.title("ROC curve of %s (AUC = %.4f)" % ('svm',auc))
pl.xlabel("False Positive Rate")
pl.ylabel("True Positive Rate")
pl.plot(x, y)# use pylab to plot x and y
pl.show()# show the plot on the screen
输入的数据集可以参考svm预测结果
其格式为:
nonclk \t clk \t score
其中:
1、nonclick:未点击的数据,可以看做负样本的数量
2、clk:点击的数量,可以看做正样本的数量
3、score:预测的分数,以该分数为group进行正负样本的预统计可以减少AUC的计算量
运行的结果为:
如果本机没安装pylab可以直接注释依赖以及画图部分
注意
上面贴的代码:
1、只能计算二分类的结果(至于二分类的标签随便处理)
2、上面代码中每个score都做了一次阈值,其实这样效率是相当低的,可以对样本进行采样或者在计算横轴坐标时进行等分计算
Ⅳ 怎么把python算出来的数据 写入论文中
将里面的python和interfrated terminal/console的配置看看,主要差别就是cwd那后面的路径。 放上去解释说就是个运行路径,默认是null,要设为和python一样的workspace这才正常了!
Ⅳ 网络爬虫 python 毕业论文呢
做爬虫,特别是python写说容易挺容易,说难也挺难的,
举个栗子 简单的:将http://paste.ubuntu.com上面的所有代码爬下来
写个for循环,调用urllib2的几个函数就成了,基本10行到20行以内的代码
难度0
情景:
1.网站服务器很卡,有些页面打不开,urlopen直接就无限卡死在了某些页面上(2.6以后urlopen有了timeout)
2.爬下来的网站出现乱码,你得分析网页的编码
3.网页用了gzip压缩,你是要在header里面约定好默认不压缩还是页面下载完毕后自己解压
4.你的爬虫太快了,被服务器要求停下来喝口茶
5.服务器不喜欢被爬虫爬,会对对header头部浏览器信息进行分析,如何伪造
6.爬虫整体的设计,用bfs爬还是dfs爬
7.如何用有效的数据结构储存url使得爬过的页面不被重复爬到
8.比如1024之类的网站(逃,你得登录后才能爬到它的内容,如何获取cookies
以上问题都是写爬虫很常见的,由于python强大的库,略微加了一些代码而已
难度1
情景:
1.还是cookies问题,网站肯定会有一个地方是log out,爬虫爬的过程中怎样避免爬到各种Log out导致session失效
2.如果有验证码才能爬到的地方,如何绕开或者识别验证码
3.嫌速度太慢,开50个线程一起爬网站数据
难度2
情景:
1.对于复杂的页面,如何有效的提取它的链接,需要对正则表达式非常熟练
2.有些标签是用Js动态生成的,js本身可以是加密的,甚至奇葩一点是jsfuck,如何爬到这些
难度3
总之爬虫最重要的还是模拟浏览器的行为,具体程序有多复杂,由你想实现的功能和被爬的网站本身所决定
爬虫写得不多,暂时能想到的就这么多,欢迎补充
Ⅵ 跪求python大神
有什么问题?Python只是编程语言,很多任务是编程完成的
你的论文应该是要做数据分析实验,你只有用熟练,才能完成实验,现在距离毕业应该还有一年时间,不要着急
Ⅶ 关于python爬虫的实验论文怎么写
叙述和描写为主,但往往兼有抒情和议论,是一种形式多样,笔墨灵活的文体,也是最广泛的文体。
论文写作,是把自己的亲身感受和经历通过生动、形象的语言,描述给读者。
论文包括的范围很广,如记人记事,日记、游记、人物传记、传说、新闻、通讯、小说等,都属于论文的范畴。
论文写的是生活中的见闻,要表达出作者对于生活的真切感受。
Ⅷ python论文参考文献有哪些
关于python外文参考文献举例如下:
1、A Python script for adaptive layout optimization of trusses.
翻译:用于桁架的自适应布局优化的Python脚本。
Ⅸ 我用python运行论文里面的一个程序,是C++ 和Python 一起写 的,老是报错,求大神指导一下
我以前也碰到过这个问题,也是macOX。
解决办法:yum install gcc python-devel。
若还是不能解决,建议去StackOverflow找找