A. python中多进程+协程的使用以及为什么要用它
python里推荐用多进程而不是多线程,但是多进程也有其自己的限制:相比线程更加笨重、切换耗时更长,并且在python的多进程下,进程数量不推荐超过CPU核心数(一个进程只有一个GIL,所以一个进程只能跑满一个CPU),因为一个进程占用一个CPU时能充分利用机器的性能,但是进程多了就会出现频繁的进程切换,反而得不偿失。
不过特殊情况(特指IO密集型任务)下,多线程是比多进程好用的。
举个例子:给你200W条url,需要你把每个url对应的页面抓取保存起来,这种时候,单单使用多进程,效果肯定是很差的。为什么呢?
例如每次请求的等待时间是2秒,那么如下(忽略cpu计算时间):
1、单进程+单线程:需要2秒*200W=400W秒==1111.11个小时==46.3天,这个速度明显是不能接受的
2、单进程+多线程:例如我们在这个进程中开了10个多线程,比1中能够提升10倍速度,也就是大约4.63天能够完成200W条抓取,请注意,这里的实际执行是:线程1遇见了阻塞,CPU切换到线程2去执行,遇见阻塞又切换到线程3等等,10个线程都阻塞后,这个进程就阻塞了,而直到某个线程阻塞完成后,这个进程才能继续执行,所以速度上提升大约能到10倍(这里忽略了线程切换带来的开销,实际上的提升应该是不能达到10倍的),但是需要考虑的是线程的切换也是有开销的,所以不能无限的启动多线程(开200W个线程肯定是不靠谱的)
3、多进程+多线程:这里就厉害了,一般来说也有很多人用这个方法,多进程下,每个进程都能占一个cpu,而多线程从一定程度上绕过了阻塞的等待,所以比单进程下的多线程又更好使了,例如我们开10个进程,每个进程里开20W个线程,执行的速度理论上是比单进程开200W个线程快10倍以上的(为什么是10倍以上而不是10倍,主要是cpu切换200W个线程的消耗肯定比切换20W个进程大得多,考虑到这部分开销,所以是10倍以上)。
还有更好的方法吗?答案是肯定的,它就是:
4、协程,使用它之前我们先讲讲what/why/how(它是什么/为什么用它/怎么使用它)
what:
协程是一种用户级的轻量级线程。协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此:
协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。
在并发编程中,协程与线程类似,每个协程表示一个执行单元,有自己的本地数据,与其它协程共享全局数据和其它资源。
why:
目前主流语言基本上都选择了多线程作为并发设施,与线程相关的概念是抢占式多任务(Preemptive multitasking),而与协程相关的是协作式多任务。
不管是进程还是线程,每次阻塞、切换都需要陷入系统调用(system call),先让CPU跑操作系统的调度程序,然后再由调度程序决定该跑哪一个进程(线程)。而且由于抢占式调度执行顺序无法确定的特点,使用线程时需要非常小心地处理同步问题,而协程完全不存在这个问题(事件驱动和异步程序也有同样的优点)。
因为协程是用户自己来编写调度逻辑的,对CPU来说,协程其实是单线程,所以CPU不用去考虑怎么调度、切换上下文,这就省去了CPU的切换开销,所以协程在一定程度上又好于多线程。
how:
python里面怎么使用协程?答案是使用gevent,使用方法:看这里
使用协程,可以不受线程开销的限制,我尝试过一次把20W条url放在单进程的协程里执行,完全没问题。
所以最推荐的方法,是多进程+协程(可以看作是每个进程里都是单线程,而这个单线程是协程化的)
多进程+协程下,避开了CPU切换的开销,又能把多个CPU充分利用起来,这种方式对于数据量较大的爬虫还有文件读写之类的效率提升是巨大的。
B. python 多进程读取同一个循环处理、可以用multiprocessing
可以每个在func中加上一个参数data,data是这个线程处理的数据;
多线程处理的时候,给每个线程分配相应的data就可以了。
给个示例:
#-*-coding:utf-8-*-
importthread,threading
importtime
defFuncTest(tdata):
printtdata
classmythread(threading.Thread):
def__init__(self,threadname):
threading.Thread.__init__(self)
defrun(self):
lock.acquire()
FuncTest(ft)
lock.release()
defMutiThread(num):
threads=[]
i=0
globalft
forxinxrange(num):
threads.append(mythread(num))
fortinthreads:
time.sleep(0.5)
lock.acquire()
ft=GetThreadParam(datafile,num,i)
#print'[%s]Thread:%s,Testdata:%s'%(time.ctime(),t,ft)
i=i+1
t.start()
lock.release()
fortinthreads:
t.join()
defGetThreadParam(datafile,num,curthread):
#线程数需要小于文件行数
f=open(datafile,'r')
lines=f.readlines()
divres=divmod(len(lines),num)
ifcurthread<(num-1):
res=lines[curthread*divres[0]:(curthread+1)*divres[0]]
elifcurthread==(num-1):
res=lines[curthread*divres[0]:((curthread+1)*divres[0]+divres[1])]
returnres
f.close()
if__name__=='__main__':
globalnum,lock
datafile='a.txt'
num=3#num并发数
lock=threading.Lock()
MutiThread(num)
a.txt文件内容如下
1
2
3
4
5
6
7
8
9
10
3个线程并发时,运行结果:
>>>
['1 ', '2 ', '3 ']
['4 ', '5 ', '6 ']
['7 ', '8 ', '9 ', '10']
C. python Windows下的多进程控制问题
windows的python多进程确实比较特殊,不过通过main入口是可以解决的,我平常都是这样用。像下面这样的结构
A文件:
importmultiprocessing
defmain():
p=multiprocessing.Process(target=work)
p.start()
defwork():
print('work')
B文件
importa
if__name__=='__main__':
a.main()
如果你的结构和我的一样还是会发生循环调用的情况,那方便把关键结构的代码贴一下吗,我看一下哪里的问题
D. python怎么多进程
需要借用库,来进行多进程,
threading
可以去了解熟悉这个库,这个可以实现多进程并发
E. Python的多进程模块multiprocessing
众所周知,Python中不存在真正的多线程,Python中的多线程是一个并发过程。如果想要并行的执行程序,充分的利用cpu资源(cpu核心),还是需要使用多进程解决的。其中multiprocessing模块应该是Python中最常用的多进程模块了。
基本上multiprocessing这个模块和threading这个模块用法是相同的,也是可以通过函数和类创建进程。
上述案例基本上就是笔者搬用了上篇文章多线程的案例,可见其使用的相似之处。导入multiprocessing后实例化Process就可以创建一个进程,参数的话也是和多线程一样,target放置进程执行函数,args存放该函数的参数。
使用类来创建进程也是需要先继承multiprocessing.Process并且实现其init方法。
Pool可以提供指定数量的进程,供用户调用,当有新的请求提交到pool中时,如果池还没有满,那么就会创建一个新的进程用来执行该请求。
但如果池中的进程数已经达到规定最大值,那么该请求就会等待,直到池中有进程结束,才会创建新的进程。
需要注意的是,在调用join方法阻塞进程前,需要先调用close方法,,否则程序会出错。
在上述案例中,提到了非阻塞,当把创建进程的方法换为pool.apply(func, (msg,))时,就会阻塞进程,出现下面的状况。
在multiprocessing模块中还存在Queue对象,这是一个进程的安全队列,近似queue.Queue。队列一般也是需要配合多线程或者多进程使用。
下列案例是一个使用进程队列实现的生产者消费者模式。
multiprocessing支持两种进程间的通信,其中一种便是上述案例的队列,另一种则称作管道。在官方文档的描述中,multiprocessing中的队列是基于管道实现的,并且拥有更高的读写效率。
管道可以理解为进程间的通道,使用Pipe([plex])创建,并返回一个元组(conn1,conn2)。如果plex被置为True(默认值),那么该管道是双向的,如果plex被置为False,那么该管道是单向的,即conn1只能用于接收消息,而conn2仅能用于发送消息。
其中conn1、conn2表示管道两端的连接对象,每个连接对象都有send()和recv()方法。send和recv方法分别是发送和接受消息的方法。例如,可以调用conn1.send发送消息,conn1.recv接收消息。如果没有消息可接收,recv方法会一直阻塞。如果管道已经被关闭,那么recv方法会抛出EOFError。
关于multiprocessing模块其实还有很多实用的类和方法,由于篇幅有限(懒),笔者就先写到这里。该模块其实用起来很像threading模块,像锁对象和守护线程(进程)等multiprocessing模块也是有的,使用方法也近乎相同。
如果想要更加详细的了解multiprocessing模块,请参考官方文档。
F. python 多进程写入同一个文件,经常报错:找不到文件,该怎么处理呢有没有大神能贴个例子之类的参考下
importthreading,time
defwrite(file,lock):
lock.acquire()#锁住
print("开始写出")
file.write("写出")
print("写出完毕")
lock.release()#解锁
returnTrue
lock=threading.Lock()#获取一个锁
file=open("1.txt")
foriinrange(100):
threading.Thread(target=write,args=(file,lock)).run()
G. python 多进程和多线程配合
由于python的多线程中存在PIL锁,因此python的多线程不能利用多核,那么,由于现在的计算机是多核的,就不能充分利用计算机的多核资源。但是python中的多进程是可以跑在不同的cpu上的。因此,尝试了多进程+多线程的方式,来做一个任务。比如:从中科大的镜像源中下载多个rpm包。
#!/usr/bin/pythonimport reimport commandsimport timeimport multiprocessingimport threadingdef download_image(url):
print '*****the %s rpm begin to download *******' % url
commands.getoutput('wget %s' % url)def get_rpm_url_list(url):
commands.getoutput('wget %s' % url)
rpm_info_str = open('index.html').read()
regu_mate = '(?<=<a href=")(.*?)(?=">)'
rpm_list = re.findall(regu_mate, rpm_info_str)
rpm_url_list = [url + rpm_name for rpm_name in rpm_list] print 'the count of rpm list is: ', len(rpm_url_list) return rpm_url_
def multi_thread(rpm_url_list):
threads = [] # url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
# rpm_url_list = get_rpm_url_list(url)
for index in range(len(rpm_url_list)): print 'rpm_url is:', rpm_url_list[index]
one_thread = threading.Thread(target=download_image, args=(rpm_url_list[index],))
threads.append(one_thread)
thread_num = 5 # set threading pool, you have put 4 threads in it
while 1:
count = min(thread_num, len(threads)) print '**********count*********', count ###25,25,...6707%25
res = [] for index in range(count):
x = threads.pop()
res.append(x) for thread_index in res:
thread_index.start() for j in res:
j.join() if not threads:
def multi_process(rpm_url_list):
# process num at the same time is 4
process = []
rpm_url_group_0 = []
rpm_url_group_1 = []
rpm_url_group_2 = []
rpm_url_group_3 = [] for index in range(len(rpm_url_list)): if index % 4 == 0:
rpm_url_group_0.append(rpm_url_list[index]) elif index % 4 == 1:
rpm_url_group_1.append(rpm_url_list[index]) elif index % 4 == 2:
rpm_url_group_2.append(rpm_url_list[index]) elif index % 4 == 3:
rpm_url_group_3.append(rpm_url_list[index])
rpm_url_groups = [rpm_url_group_0, rpm_url_group_1, rpm_url_group_2, rpm_url_group_3] for each_rpm_group in rpm_url_groups:
each_process = multiprocessing.Process(target = multi_thread, args = (each_rpm_group,))
process.append(each_process) for one_process in process:
one_process.start() for one_process in process:
one_process.join()# for each_url in rpm_url_list:# print '*****the %s rpm begin to download *******' %each_url## commands.getoutput('wget %s' %each_url)
def main():
url = 'https://mirrors.ustc.e.cn/centos/7/os/x86_64/Packages/'
url_paas = 'http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/'
url_paas2 ='http://mirrors.ustc.e.cn/fedora/development/26/Server/x86_64/os/Packages/u/'
start_time = time.time()
rpm_list = get_rpm_url_list(url_paas) print multi_process(rpm_list) # print multi_thread(rpm_list)
#print multi_process()
# print multi_thread(rpm_list)
# for index in range(len(rpm_list)):
# print 'rpm_url is:', rpm_list[index]
end_time = time.time() print 'the download time is:', end_time - start_timeprint main()123456789101112131415161718
代码的功能主要是这样的:
main()方法中调用get_rpm_url_list(base_url)方法,获取要下载的每个rpm包的具体的url地址。其中base_url即中科大基础的镜像源的地址,比如:http://mirrors.ustc.e.cn/centos/7.3.1611/paas/x86_64/openshift-origin/,这个地址下有几十个rpm包,get_rpm_url_list方法将每个rpm包的url地址拼出来并返回。
multi_process(rpm_url_list)启动多进程方法,在该方法中,会调用多线程方法。该方法启动4个多进程,将上面方法得到的rpm包的url地址进行分组,分成4组,然后每一个组中的rpm包再最后由不同的线程去执行。从而达到了多进程+多线程的配合使用。
代码还有需要改进的地方,比如多进程启动的进程个数和rpm包的url地址分组是硬编码,这个还需要改进,毕竟,不同的机器,适合同时启动的进程个数是不同的。
H. Python多进程运行——Multiprocessing基础教程2
上篇文章简单介绍了multiprocessing模块,本文将要介绍进程之间的数据共享和信息传递的概念。
在多进程处理中,所有新创建的进程都会有这两个特点:独立运行,有自己的内存空间。
我们来举个例子展示一下:
这个程序的输出结果是:
在上面的程序中我们尝试在两个地方打印全局列表result的内容:
我们再用一张图来帮助理解记忆不同进程间的数据关系:
如果程序需要在不同的进程之间共享一些数据的话,该怎么做呢?不用担心,multiprocessing模块提供了Array对象和Value对象,用来在进程之间共享数据。
所谓Array对象和Value对象分别是指从共享内存中分配的ctypes数组和对象。我们直接来看一个例子,展示如何用Array对象和Value对象在进程之间共享数据:
程序输出的结果如下:
成功了!主程序和p1进程输出了同样的结果,说明程序中确实完成了不同进程间的数据共享。那么我们来详细看一下上面的程序做了什么:
在主程序中我们首先创建了一个Array对象:
向这个对象输入的第一个参数是数据类型:i表示整数,d代表浮点数。第二个参数是数组的大小,在这个例子中我们创建了包含4个元素的数组。
类似的,我们创建了一个Value对象:
我们只对Value对象输入了一个参数,那就是数据类型,与上述的方法一致。当然,我们还可以对其指定一个初始值(比如10),就像这样:
随后,我们在创建进程对象时,将刚创建好的两个对象:result和square_sum作为参数输入给进程:
在函数中result元素通过索引进行数组赋值,square_sum通过 value 属性进行赋值。
注意:为了完整打印result数组的结果,需要使用 result[:] 进行打印,而square_sum也需要使用 value 属性进行打印:
每当python程序启动时,同时也会启动一个服务器进程。随后,只要我们需要生成一个新进程,父进程就会连接到服务器并请求它派生一个新进程。这个服务器进程可以保存Python对象,并允许其他进程使用代理来操作它们。
multiprocessing模块提供了能够控制服务器进程的Manager类。所以,Manager类也提供了一种创建可以在不同流程之间共享的数据的方法。
服务器进程管理器比使用共享内存对象更灵活,因为它们可以支持任意对象类型,如列表、字典、队列、值、数组等。此外,单个管理器可以由网络上不同计算机上的进程共享。
但是,服务器进程管理器的速度比使用共享内存要慢。
让我们来看一个例子:
这个程序的输出结果是:
我们来理解一下这个程序做了什么:首先我们创建了一个manager对象
在with语句下的所有行,都是在manager对象的范围内的。接下来我们使用这个manager对象创建了列表(类似的,我们还可以用 manager.dict() 创建字典)。
最后我们创建了进程p1(用于在records列表中插入一条新的record)和p2(将records打印出来),并将records作为参数进行传递。
服务器进程的概念再次用下图总结一下:
为了能使多个流程能够正常工作,常常需要在它们之间进行一些通信,以便能够划分工作并汇总最后的结果。multiprocessing模块支持进程之间的两种通信通道:Queue和Pipe。
使用队列来回处理多进程之间的通信是一种比较简单的方法。任何Python对象都可以使用队列进行传递。我们来看一个例子:
上面这个程序的输出结果是:
我们来看一下上面这个程序到底做了什么。首先我们创建了一个Queue对象:
然后,将这个空的Queue对象输入square_list函数。该函数会将列表中的数平方,再使用 put() 方法放入队列中:
随后使用 get() 方法,将q打印出来,直至q重新称为一个空的Queue对象:
我们还是用一张图来帮助理解记忆:
一个Pipe对象只能有两个端点。因此,当进程只需要双向通信时,它会比Queue对象更好用。
multiprocessing模块提供了 Pipe() 函数,该函数返回由管道连接的一对连接对象。 Pipe() 返回的两个连接对象分别表示管道的两端。每个连接对象都有 send() 和 recv() 方法。
我们来看一个例子:
上面这个程序的输出结果是:
我们还是来看一下这个程序到底做了什么。首先创建了一个Pipe对象:
与上文说的一样,该对象返回了一对管道两端的两个连接对象。然后使用 send() 方法和 recv() 方法进行信息的传递。就这么简单。在上面的程序中,我们从一端向另一端发送一串消息。在另一端,我们收到消息,并在收到END消息时退出。
要注意的是,如果两个进程(或线程)同时尝试从管道的同一端读取或写入管道中的数据,则管道中的数据可能会损坏。不过不同的进程同时使用管道的两端是没有问题的。还要注意,Queue对象在进程之间进行了适当的同步,但代价是增加了计算复杂度。因此,Queue对象对于线程和进程是相对安全的。
最后我们还是用一张图来示意:
Python的multiprocessing模块还剩最后一篇文章:多进程的同步与池化
敬请期待啦!