Ⅰ 学习python有什么好的用处
1. Python易于学习
相较于其它编程语言而言,Python更容易一些。Python 的语言没有多少仪式化的东西,所以就算不是一个 Python 专家,你也能读懂它的代码。我的经验是,通过实例来学习和教授 Python要比采取同样的方式去接触比方说 Ruby 或者 Perl 更加容易,因为 Python 的语法里面条条框框以及特殊的处理场景要少得多。 它所专注的并非语言表现的丰富程度,而是你想要用你的代码完成什么。
2. 它能用少量的代码构建出很多功能
Python 能带给所有开发者一种快速的学习体验。通过实践,你可以在最多两天之内轻松实现一个具备基础功能的游戏。另外一些让 Python 成为一门引人注目的编程语言的因素就是它的可读性和高效性。
3. Python 多才多艺
Python应用场景广泛,可被应用于如今你所能想得到的相当多的软件开发和操作场景,目前已广泛应用于人工智能、云计算开发、大数据开发、数据分析、科学运算、网站开发、爬虫、自动化运维、自动化测试、游戏开发等领域,因此,只需要你将 Python 了解得更加深入一点点,就能让你具备可以适应范围更宽泛的工作角色的技能。
4. Python 拥有最成熟的程序包资源库之一
Python 以 PyPI为其后盾, 这是一个拥有超过 85,000 个Python 模块和脚本的资源库,你拿过来就立马可以使用。这些模块向你的本地 Python 环境分发已经预先打包好的功能,可以用来解决各种诸如数据库处理、计算机视觉实现、数据分析以及构建 REST 风格的 web 服务等问题。
5. Python 是跨平台且开源的
Python 可以跨平台运行,并且已经开放源代码超过20年的时间了,如果你需要代码能同时在Linux,Windows 以及 macOS 上跑起来,Python 就能满足要求。此外,有数十年的修修补补以及不断完善做后盾,可以确保你能够随心所欲地运行自己的代码。
6. Python 很灵活
有一些Python同其它编程语言集成在一起的稳定实现。
CPython, 同 C 集成的版本;
Jython, 同 Java 集成的Python版本;
IronPython, 被设计用来兼容 .Net 和 C#;
PyObjc, ObjectiveC 工具下的 Python 写法;
RubyPython, 同 Ruby 集成的 Python 版本。
并没有很多的语言能提供像 Python 这样的多样性和简洁性; 能持续努力演进并让社区繁荣好几十年的就更少了。无论你是编码新手还是能信手写就脚本的大师,都需要了解一下 Python。
Ⅱ 学习python进阶知识,看哪些视频
Python实战:四周实现爬虫系统(高清视频)网络网盘
链接:
若资源有问题欢迎追问~
Ⅲ Python课程内容都学习什么啊
贺圣军Python轻松入门到项目实战(经典完整版)(超清视频)网络网盘
链接: https://pan..com/s/1C9k1o65FuQKNe68L3xEx3w
若资源有问题欢迎追问~
Ⅳ 如何系统地自学 Python
是否非常想学好 Python,一方面被琐事纠缠,一直没能动手,另一方面,担心学习成本太高,心里默默敲着退堂鼓?
幸运的是,Python 是一门初学者友好的编程语言,想要完全掌握它,你不必花上太多的时间和精力。
Python 的设计哲学之一就是简单易学,体现在两个方面:
语法简洁明了:相对 Ruby 和 Perl,它的语法特性不多不少,大多数都很简单直接,不玩儿玄学。
切入点很多:Python 可以让你可以做很多事情,科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,总有一个是你感兴趣并且愿意投入时间的。
废话不多说,学会一门语言的捷径只有一个: Getting Started
¶ 起步阶段
任何一种编程语言都包含两个部分:硬知识和软知识,起步阶段的主要任务是掌握硬知识。
硬知识
“硬知识”指的是编程语言的语法、算法和数据结构、编程范式等,例如:变量和类型、循环语句、分支、函数、类。这部分知识也是具有普适性的,看上去是掌握了一种语法,实际是建立了一种思维。例如:让一个 Java 程序员去学习 Python,他可以很快的将 Java 中的学到的面向对象的知识 map 到 Python 中来,因此能够快速掌握 Python 中面向对象的特性。
如果你是刚开始学习编程的新手,一本可靠的语法书是非常重要的。它看上去可能非常枯燥乏味,但对于建立稳固的编程思维是必不可少。
下面列出了一些适合初学者入门的教学材料:
廖雪峰的 Python 教程 Python 中文教程的翘楚,专为刚刚步入程序世界的小白打造。
笨方法学 Python 这本书在讲解 Python 的语法成分时,还附带大量可实践的例子,非常适合快速起步。
The Hitchhiker’s Guide to Python! 这本指南着重于 Python 的最佳实践,不管你是 Python 专家还是新手,都能获得极大的帮助。
Python 的哲学:
学习也是一样,虽然推荐了多种学习资料,但实际学习的时候,最好只选择其中的一个,坚持看完。
必要的时候,可能需要阅读讲解数据结构和算法的书,这些知识对于理解和使用 Python 中的对象模型有着很大的帮助。
软知识
“软知识”则是特定语言环境下的语法技巧、类库的使用、IDE的选择等等。这一部分,即使完全不了解不会使用,也不会妨碍你去编程,只不过写出的程序,看上去显得“傻”了些。
对这些知识的学习,取决于你尝试解决的问题的领域和深度。对初学者而言,起步阶段极易走火,或者在选择 Python 版本时徘徊不决,一会儿看 2.7 一会儿又转到 3.0,或者徜徉在类库的大海中无法自拔,Scrapy,Numpy,Django 什么都要试试,或者参与编辑器圣战、大括号缩进探究、操作系统辩论赛等无意义活动,或者整天跪舔语法糖,老想着怎么一行代码把所有的事情做完,或者去构想圣洁的性能安全通用性健壮性全部满分的解决方案。
很多“大牛”都会告诫初学者,用这个用那个,少走弯路,这样反而把初学者推向了真正的弯路。
还不如告诉初学者,学习本来就是个需要你去走弯路出 Bug,只能脚踏实地,没有奇迹只有狗屎的过程。
选择一个方向先走下去,哪怕脏丑差,走不动了再看看有没有更好的解决途径。
自己走了弯路,你才知道这么做的好处,才能理解为什么人们可以手写状态机去匹配却偏要发明正则表达式,为什么面向过程可以解决却偏要面向对象,为什么我可以操纵每一根指针却偏要自动管理内存,为什么我可以嵌套回调却偏要用 Promise...
更重要的是,你会明白,高层次的解决方法都是对低层次的封装,并不是任何情况下都是最有效最合适的。
技术涌进就像波浪一样,那些陈旧的封存已久的技术,消退了迟早还会涌回的。就像现在移动端应用、手游和 HTML5 的火热,某些方面不正在重演过去 PC 的那些历史么?
因此,不要担心自己走错路误了终身,坚持并保持进步才是正道。
起步阶段的核心任务是掌握硬知识,软知识做适当了解,有了稳固的根,粗壮的枝干,才能长出浓密的叶子,结出甜美的果实。
¶ 发展阶段
完成了基础知识的学习,必定会感到一阵空虚,怀疑这些语法知识是不是真的有用。
没错,你的怀疑是非常正确的。要让 Python 发挥出它的价值,当然不能停留在语法层面。
发展阶段的核心任务,就是“跳出 Python,拥抱世界”。
在你面前会有多个分支:科学计算和数据分析、爬虫、Web 网站、游戏、命令行实用工具等等等等,这些都不是仅仅知道 Python 语法就能解决的问题。
拿爬虫举例,如果你对计算机网络,HTTP 协议,HTML,文本编码,JSON 一无所知,你能做好这部分的工作么?而你在起步阶段的基础知识也同样重要,如果你连循环递归怎么写都还要查文档,连 BFS 都不知道怎么实现,这就像工匠做石凳每次起锤都要思考锤子怎么使用一样,非常低效。
在这个阶段,不可避免要接触大量类库,阅读大量书籍的。
类库方面
“Awesome Python 项目”:vinta/awesome-python · GitHub
这里列出了你在尝试解决各种实际问题时,Python 社区已有的工具型类库,如下图所示:
vinta/awesome-python
你可以按照实际需求,寻找你需要的类库。
至于相关类库如何使用,必须掌握的技能便是阅读文档。由于开源社区大多数文档都是英文写成的,所以,英语不好的同学,需要恶补下。
书籍方面
这里我只列出一些我觉得比较有一些帮助的书籍,详细的请看豆瓣的书评:
科学和数据分析:
❖“集体智慧编程”:集体智慧编程 (豆瓣)
❖“数学之美”:数学之美 (豆瓣)
❖“统计学习方法”:统计学习方法 (豆瓣)
❖“Pattern Recognition And Machine Learning”:Pattern Recognition And Machine Learning (豆瓣)
❖“数据科学实战”:数据科学实战 (豆瓣)
❖“数据检索导论”:信息检索导论 (豆瓣)
爬虫:
❖“HTTP 权威指南”:HTTP权威指南 (豆瓣)
Web 网站:
❖“HTML & CSS 设计与构建网站”:HTML & CSS设计与构建网站 (豆瓣)
...
列到这里已经不需要继续了。
聪明的你一定会发现上面的大部分书籍,并不是讲 Python 的书,而更多的是专业知识。
事实上,这里所谓“跳出 Python,拥抱世界”,其实是发现 Python 和专业知识相结合,能够解决很多实际问题。这个阶段能走到什么程度,更多的取决于自己的专业知识。
¶ 深入阶段
这个阶段的你,对 Python 几乎了如指掌,那么你一定知道 Python 是用 C 语言实现的。
可是 Python 对象的“动态特征”是怎么用相对底层,连自动内存管理都没有的C语言实现的呢?这时候就不能停留在表面了,勇敢的拆开 Python 的黑盒子,深入到语言的内部,去看它的历史,读它的源码,才能真正理解它的设计思路。
这里推荐一本书:
“Python 源码剖析”:Python源码剖析 (豆瓣)
这本书把 Python 源码中最核心的部分,给出了详细的阐释,不过阅读此书需要对 C 语言内存模型和指针有着很好的理解。
另外,Python 本身是一门杂糅多种范式的动态语言,也就是说,相对于 C 的过程式、 Haskell 等的函数式、Java 基于类的面向对象而言,它都不够纯粹。换而言之,编程语言的“道学”,在 Python 中只能有限的体悟。学习某种编程范式时,从那些面向这种范式更加纯粹的语言出发,才能有更深刻的理解,也能了解到 Python 语言的根源。
这里推荐一门公开课
“编程范式”:斯坦福大学公开课:编程范式
讲师高屋建瓴,从各种编程范式的代表语言出发,给出了每种编程范式最核心的思想。
值得一提的是,这门课程对C语言有非常深入的讲解,例如C语言的范型和内存管理。这些知识,对阅读 Python 源码也有大有帮助。
Python 的许多最佳实践都隐藏在那些众所周知的框架和类库中,例如 Django、Tornado 等等。在它们的源代码中淘金,也是个不错的选择。
¶ 最后的话
每个人学编程的道路都是不一样的,其实大都殊途同归,没有迷路的人只有不能坚持的人!
希望想学 Python 想学编程的同学,不要犹豫了,看完这篇文章,
Just Getting Started !!!
Ⅳ 《Python面向对象编程指南豆瓣》pdf下载在线阅读全文,求百度网盘云资源
《Python面向对象编程指南豆瓣》网络网盘pdf最新全集下载:
链接:https://pan..com/s/1gqhzxguIli3azhI1vTdPWQ
Ⅵ python语言是解释型语言吗
是的--=]
Ⅶ python是学什么的
学习python主要有自学和报班学习两种方式。
具体学的顺序如下:
①Python软件开发基础
掌握计算机的构成和工作原理
会使用Linux常用工具
熟练使用Docker的基本命令
建立Python开发环境,并使用print输出
使用Python完成字符串的各种操作
使用Python re模块进行程序设计
使用Python创建文件、访问、删除文件
掌握import 语句、From…import 语句、From…import* 语句、方法的引用、Python中的包
②Python软件开发进阶
能够使用Python面向对象方法开发软件
能够自己建立数据库,表,并进行基本数据库操作
掌握非关系数据库MongoDB的使用,掌握Redis开发
能够独立完成TCP/UDP服务端客户端软件开发,能够实现ftp、http服务器,开发邮件软件
能开发多进程、多线程软件
③Python全栈式WEB工程师
能够独立完成后端软件开发,深入理解Python开发后端的精髓
能够独立完成前端软件开发,并和后端结合,熟练掌握使用Python进行全站Web开发的技巧
④Python多领域开发
能够使用Python熟练编写爬虫软件
能够熟练使用Python库进行数据分析
招聘网站Python招聘职位数据爬取分析
掌握使用Python开源人工智能框架进行人工智能软件开发、语音识别、人脸识别
掌握基本设计模式、常用算法
掌握软件工程、项目管理、项目文档、软件测试调优的基本方法
Python目前是比较火,学习之后可以从事软件开发、数据挖掘等工作,发展前景非常好,普通人也可以学习。
想要系统学习,你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,建议实地考察对比一下。
祝你学有所成,望采纳。
Ⅷ 初学者学Python编程如何快速入门
电子书集合|数据科学速查表|迁移学习实战 ,免费下载
链接: https://pan..com/s/11qnpoLX1H_XzFB-RdVNG4w 提取码: z9x7
Ⅸ python为什么是面向对象的
Python虽然是解释型语言,但从设计之初就已经是一门面向对象的语言,对于Python来说一切皆为对象。正因为如此,在Python中创建一个类和对象是很容易的,当然如果习惯面向过程或者函数的写法也是可以的,Python并不做硬性的限制。
Python的面向对象特征如下:
封装
面向对象程序设计中的术语对象(Object)基本上可以看做数据(特性)以及由一系列可以存取、操作这些数据的方法所组成的集合。传统意义上的“程序=数据结构+算法”被封装”掩盖“并简化为“程序=对象+消息”。对象是类的实例,类的抽象则需要经过封装。封装可以让调用者不用关心对象是如何构建的而直接进行使用。
继承
类继承:
继承给人的直接感觉是这是一种复用代码的行为。继承可以理解为它是以普通的类为基础建立专门的类对象,子类和它继承的父类是IS-A的关系。
多重继承:
不同于C#,Python是支持多重类继承的(C#可继承自多个Interface,但最多继承自一个类)。多重继承机制有时很好用,但是它容易让事情变得复杂。
多态
多态意味着可以对不同的对象使用同样的操作,但它们可能会以多种形态呈现出结果。在Python中,任何不知道对象到底是什么类型,但又需要对象做点什么的时候,都会用到多态。方法是多态的,运算符也是多态的。
相关推荐:《Python教程》以上就是小编分享的关于python为什么是面向对象的的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
Ⅹ python怎么学习
对于很多想学习Python的小伙伴来说,不知道从何开始,小蜗这里整理了一份Python全栈开发的学习路线,大家可按照以下这份大纲来进行学习:
第一阶段:专业核心基础
阶段目标:
1. 熟练掌握Python的开发环境与编程核心知识
2. 熟练运用Python面向对象知识进行程序开发
3. 对Python的核心库和组件有深入理解
4. 熟练应用SQL语句进行数据库常用操作
5. 熟练运用Linux操作系统命令及环境配置
6. 熟练使用MySQL,掌握数据库高级操作
7. 能综合运用所学知识完成项目
知识点:
Python编程基础、Python面向对象、Python高级进阶、MySQL数据库、Linux操作系统。
1、Python编程基础,语法规则,函数与参数,数据类型,模块与包,文件IO,培养扎实的Python编程基本功,同时对Python核心对象和库的编程有熟练的运用。
2、Python面向对象,核心对象,异常处理,多线程,网络编程,深入理解面向对象编程,异常处理机制,多线程原理,网络协议知识,并熟练运用于项目中。
3、类的原理,MetaClass,下划线的特殊方法,递归,魔术方法,反射,迭代器,装饰器,UnitTest,Mock。深入理解面向对象底层原理,掌握Python开发高级进阶技术,理解单元测试技术。
4、数据库知识,范式,MySQL配置,命令,建库建表,数据的增删改查,约束,视图,存储过程,函数,触发器,事务,游标,PDBC,深入理解数据库管理系统通用知识及MySQL数据库的使用与管理。为Python后台开发打下坚实基础。
5、Linux安装配置,文件目录操作,VI命令,管理,用户与权限,环境配置,Docker,Shell编程Linux作为一个主流的服务器操作系统,是每一个开发工程师必须掌握的重点技术,并且能够熟练运用。
第二阶段:PythonWEB开发
阶段目标:
1. 熟练掌握Web前端开发技术,HTML,CSS,JavaScript及前端框架
2. 深入理解Web系统中的前后端交互过程与通信协议
3. 熟练运用Web前端和Django和Flask等主流框架完成Web系统开发
4. 深入理解网络协议,分布式,PDBC,AJAX,JSON等知识
5. 能够运用所学知识开发一个MiniWeb框架,掌握框架实现原理
6. 使用Web开发框架实现贯穿项目
知识点:
Web前端编程、Web前端高级、Django开发框架、Flask开发框架、Web开发项目实战。
1、Web页面元素,布局,CSS样式,盒模型,JavaScript,JQuery与Bootstrap掌握前端开发技术,掌握JQuery与BootStrap前端开发框架,完成页面布局与美化。
2、前端开发框架Vue,JSON数据,网络通信协议,Web服务器与前端交互熟练使用Vue框架,深入理解HTTP网络协议,熟练使用Swagger,AJAX技术实现前后端交互。
3、自定义Web开发框架,Django框架的基本使用,Model属性及后端配置,Cookie与Session,模板Templates,ORM数据模型,Redis二级缓存,RESTful,MVC模型掌握Django框架常用API,整合前端技术,开发完整的WEB系统和框架。
4、Flask安装配置,App对象的初始化和配置,视图函数的路由,Request对象,Abort函数,自定义错误,视图函数的返回值,Flask上下文和请求钩子,模板,数据库扩展包Flask-Sqlalchemy,数据库迁移扩展包Flask-Migrate,邮件扩展包Flask-Mail。掌握Flask框架的常用API,与Django框架的异同,并能独立开发完整的WEB系统开发。
第三阶段:爬虫与数据分析
阶段目标:
1. 熟练掌握爬虫运行原理及常见网络抓包工具使用,能够对HTTP及HTTPS协议进行抓包分析
2. 熟练掌握各种常见的网页结构解析库对抓取结果进行解析和提取
3. 熟练掌握各种常见反爬机制及应对策略,能够针对常见的反爬措施进行处理
4. 熟练使用商业爬虫框架Scrapy编写大型网络爬虫进行分布式内容爬取
5. 熟练掌握数据分析相关概念及工作流程
6. 熟练掌握主流数据分析工具Numpy、Pandas和Matplotlib的使用
7. 熟练掌握数据清洗、整理、格式转换、数据分析报告编写
8. 能够综合利用爬虫爬取豆瓣网电影评论数据并完成数据分析全流程项目实战
知识点:
网络爬虫开发、数据分析之Numpy、数据分析之Pandas。
1、爬虫页面爬取原理、爬取流程、页面解析工具LXML,Beautifulfoup,正则表达式,代理池编写和架构、常见反爬措施及解决方案、爬虫框架结构、商业爬虫框架Scrapy,基于对爬虫爬取原理、网站数据爬取流程及网络协议的分析和了解,掌握网页解析工具的使用,能够灵活应对大部分网站的反爬策略,具备独立完成爬虫框架的编写能力和熟练应用大型商业爬虫框架编写分布式爬虫的能力。
2、Numpy中的ndarray数据结构特点、numpy所支持的数据类型、自带的数组创建方法、算术运算符、矩阵积、自增和自减、通用函数和聚合函数、切片索引、ndarray的向量化和广播机制,熟悉数据分析三大利器之一Numpy的常见使用,熟悉ndarray数据结构的特点和常见操作,掌握针对不同维度的ndarray数组的分片、索引、矩阵运算等操作。
3、Pandas里面的三大数据结构,包括Dataframe、Series和Index对象的基本概念和使用,索引对象的更换及删除索引、算术和数据对齐方法,数据清洗和数据规整、结构转换,熟悉数据分析三大利器之一Pandas的常见使用,熟悉Pandas中三大数据对象的使用方法,能够使用Pandas完成数据分析中最重要的数据清洗、格式转换和数据规整工作、Pandas对文件的读取和操作方法。
4、matplotlib三层结构体系、各种常见图表类型折线图、柱状图、堆积柱状图、饼图的绘制、图例、文本、标线的添加、可视化文件的保存,熟悉数据分析三大利器之一Matplotlib的常见使用,熟悉Matplotlib的三层结构,能够熟练使用Matplotlib绘制各种常见的数据分析图表。能够综合利用课程中所讲的各种数据分析和可视化工具完成股票市场数据分析和预测、共享单车用户群里数据分析、全球幸福指数数据分析等项目的全程实战。
第四阶段:机器学习与人工智能
阶段目标:
1. 理解机器学习相关的基本概念及系统处理流程
2. 能够熟练应用各种常见的机器学习模型解决监督学习和非监督学习训练和测试问题,解决回归、分类问题
3. 熟练掌握常见的分类算法和回归算法模型,如KNN、决策树、随机森林、K-Means等
4. 掌握卷积神经网络对图像识别、自然语言识别问题的处理方式,熟悉深度学习框架TF里面的张量、会话、梯度优化模型等
5. 掌握深度学习卷积神经网络运行机制,能够自定义卷积层、池化层、FC层完成图像识别、手写字体识别、验证码识别等常规深度学习实战项目
知识点:
1、机器学习常见算法、sklearn数据集的使用、字典特征抽取、文本特征抽取、归一化、标准化、数据主成分分析PCA、KNN算法、决策树模型、随机森林、线性回归及逻辑回归模型和算法。熟悉机器学习相关基础概念,熟练掌握机器学习基本工作流程,熟悉特征工程、能够使用各种常见机器学习算法模型解决分类、回归、聚类等问题。
2、Tensorflow相关的基本概念,TF数据流图、会话、张量、tensorboard可视化、张量修改、TF文件读取、tensorflow playround使用、神经网络结构、卷积计算、激活函数计算、池化层设计,掌握机器学习和深度学习之前的区别和练习,熟练掌握深度学习基本工作流程,熟练掌握神经网络的结构层次及特点,掌握张量、图结构、OP对象等的使用,熟悉输入层、卷积层、池化层和全连接层的设计,完成验证码识别、图像识别、手写输入识别等常见深度学习项目全程实战。