A. python 在编程语言中是什么地位为什么很多大学不教 Python
作者看着网上各种数据分析的知识泛滥, 但是没有什么体系,初学者不知道学哪些, 不知道学多少, 不知道学多深, 单纯一个python语言, 数据分析会用到那种程度, 不可能说像开发那样去学, numpy如果不是做算法工程师用到的知识并不多, pandas知识杂乱无章, 哪些才是最常用的功能等等, 作者不忍众生皆苦, 决定写一套python数据分析的全套教程, 目前已完成一部分课件的制作。需要说明的是, 作为一名数据分析师, 你应该先会一点Excel和SQL知识,相关的内容, 网上很多。但是, 即便你一点Excel和SQL都不会也不会影响这部分的学习 !目前作者整理的大纲如下:
第一章 python编程基础
1.1 python语言概述 1.2 数据科学神器--Anaconda介绍与安装 1.3 标准输入输出 1.4 变量定义与赋值 1.5 数据类型 1.6 流程控制语句 1.7 函数
1.8 面向对象编程 第二章 python数据清洗之numpy 2.1 核心ndarray对象的创建 2.2 ndarray对象常用的属性和方法 2.3 ndarray对象的索引和切片 2.4 ndarray对象的分割与合并 2.5 ndarray对象的广播(Broadcast) 2.6 numpy中的算术运算函数 2.7 numpy中的统计函数 2.8 numpy中的排序 搜索 计数 去重函数 2.9 numpy中的字符串函数 2.10 numpy中可能会用到的线性代数模块(后期机器学习会用到一点)
第三章 数据清洗神器pandas
3.1 pandas核心对象之Series对象的创建 常用属性和方法 3.2 pandas核心对象之DataFrame对象的创建 常用属性和方法 3.3 DataFrame对象的列操作和行操作 3.4 DataFrame对象的索引和切片 3.5 DataFrame对象的布尔索引 3.6 数据的读入与导出 3.7 groupby分组运算 3.8 数据合并与数据透视
第四章 数据可视化matplotlib seaborn pyecharts
4.1 包括常用图形的绘制,略
第五章 实战案列
5.1 拉勾网数据分析相关职位分析 5.2 boss直聘数据分析相关职位分析 5.3 珍爱网女性用户数据分析
第六章 机器学习
机器学习部分, 简单的算法会讲手写, 难的就用scikit-learn实现, 可能有小伙伴说, 这是调包侠干的, 小哥哥!小姐姐!哪有那么多公司, 那么多人自己干写算法的, 有几个人敢说他写的算法比scikit-learn写得好? 再说了, 你是数据分析师, 这些是你的工具, 解决问题的!不是一天到晚拉格朗日对偶性!先来个机器学习介绍, 然后如下:
6.1 K近邻算法 6.2 Kmeans算法 6.3 决策树 阶段案列:决策树案列(保险行业) 6.4 线性回归 岭回归 Lasso回归 6.5 逻辑回归 6.6 朴素贝叶斯 阶段案列:推荐系统(电商玩具) 6.7 随机森林 6.8 Adaboost 6.9 梯度提升树GBDT 6.10 极端梯度提升树Xgboost 6.11 支持向量机SVM 6.12 神经网络 阶段案例:Xgboost案例
------------------------------本节内容-----------------------------------------
python语言概述
在说python之前, 我们还是先来看看计算机软硬件的发展历史。
1 计算机硬件的发展历史
第一代计算机-电子管计算机(1946-1957)
无论如何,一项技术的突破必然伴随着其他行业的突破,简而言之,电子计算机的出现,前提必须有电子技术的进步,否则一切都是空谈!下面是我列举出计算机硬件的发展过程中, 一些比较重要的事件。
1906年, 美国的Lee De Forest 发明了电子管。在这之前造出数字电子计算机是不可能的。这为电子计算机的发 展奠定了基础。
1924年2月, 一个具有划时代意义的公司成立,IBM。
1935年, IBM推出IBM 601机。 这是一台能在一秒钟算出乘法的穿孔卡片计算机。这台机器无论在自然科学还是在商业意义上都具有重要的地位。大约造了1500台。
1937年, 英国剑桥大学的Alan M. Turing (1912-1954)出版了他的论文 ,并提出了被后人称之为"图灵机"的数学模型。
1937年, 美国贝尔试验室的George Stibitz展示了用继电器表示二进制的装置。尽管仅仅是个展示品,但却是世界上第一台二进制电子计算机。
1941年, Atanasoff和学生Berry完成了能解线性代数方程的计算机,取名叫"ABC"(Atanasoff-Berry Computer),用电容作存储器,用穿孔卡片作辅助存储器,那些孔实际上是"烧"上的。 时钟频率是60HZ,完成一次加法运算用时一秒。这就是ABC计算机。
1946年, 美国宾夕法尼亚大学,第一台通用电子计算机ENIAC (Electronic Numerical Integrator 和 Computer)诞生, 总工程师埃克特在当时年仅25岁。
这时的计算机的基本线路是采用电子管结构,程序从人工手编的 机器指令程序(0 1),过渡到符号语言(汇编),电子管计算机是计算工具革命性发展的开始,它所采用的进位制与程序存贮等基本技术思想,奠定了现代电子计算机技术基础。以冯·诺依曼为代表。
第二代计算机——晶体管计算机(时间1957~1964)
电子管时代的计算机尽管已经步入了现代计算机的范畴,但其体积之大、能耗之高、故障之多、价格之贵大大制约了它的普及应用。直到晶体管被发明出来,电子计算机才找到了腾飞的起点,一发而不可收……
20世纪50年代中期,晶体管的出现使计算机生产技术得到了根本性的发展,由晶体管代替电子管作为计算机的基础器件,用 磁芯或磁鼓作存储器,在整体性能上,比第一代计算机有了很大的提高。
第三代计算机——中小规模集成电路计算机(时间1964~1971)
20世纪60年代中期, 计算机发展历程随着半导体工艺的发展,成功制造了集成电路。中小规模集成电路成为计算机的主要部件,主存储器也渐渐过渡到 半导体存储器,使计算机的体积更小,大大降低了计算机计算时的功耗,由于减少了 焊点和 接插件,进一步提高了计算机的可靠性。
第四代计算机——大规模和超大规模集成电路计算机(时间1971~至今)
随着大规模集成电路的成功制作并用于计算机硬件生产过程,计算机的体积进一步缩小,性能进一步提高。集成更高的大容量半导体存储器作为内存储器,发展了并行技术和多机系统,出现了 精简指令集计算机(RISC),软件系统工程化、理论化,程序设计自动化。微型计算机在社会上的应用范围进一步扩大,几乎所有领域都能看到计算机的“身影”。
第五代计算机——泛指具有人工智能的计算机(至今~未来)
目前还没有明确地定义
2 简述计算机软件的发展历史
编程语言的发展
计算机软件系统的发展,也伴随着编程语言的发展。计算机程序设计语言的发展,经历了从机器语言、汇编语言到高级语言的历程。
机器语言:简单点说,机器本身也只认识0和1,电路无非就只有通和断两种状态,对应的二进制就是二进制的1和1。
汇编语言:汇编语言只是把一些特殊的二进制用特殊的符号表示,例如,机器要传送一个数据,假设“传送”这个指令对应的机器码是000101,则人们把000101用一个特殊符号,比如mov来表示,当人们要用这个指令时用mov就行,但是mov的本质还是000101,没有脱离硬件的范围,有可能这个指令不能在其他机器上用。
高级语言:高级语言完全脱离了硬件范畴,所有的语法更贴近人类的自然语言,人们只需要清楚高级语言的语法,写出程序就行了,剩下的交给编译器或者解释器去编译或者解释成机器语言就行了,看,这样就完全脱离了硬件的范畴,大大提高了程序的开发效率。接下来我们就来看看高级语言的发展,高级语言非常多,我们主要看看比较经典的几个。
高级语言的发展
B语言与Unix
20世纪60年代,贝尔实验室的研究员Ken Thompson(肯·汤普森)发明了B语言,并使用B编了个游戏 - Space Travel,他想玩自己这个游戏,所以他背着老板找到了台空闲的机器 - PDP-7,但是这台机器没有操作系统,于是Thompson着手为PDP-7开发操作系统,后来这个OS被命名为 - UNIX。
C语言
1971年,Ken Thompson(肯·汤普森)的同事D.M.Ritchie(DM里奇),也很想玩Space Travel,所以加入了Ken Thompson,合作开发UNIX,他的主要工作是改进Thompson的B语言。最终,在1972年这个新语言被称为C,取BCPL的第二个字母,也是B的下一个字母。
C语言和Unix
1973年,C主体完成。Ken Thompson和D.M.Ritchie迫不及待的开始用C语言完全重写了UNIX。此时编程的乐趣已经使他们完全忘记了那个“Space Travel”,一门心思的投入到了UNIX和C语言的开发中。自此,C语言和UNIX相辅相成的发展至今。
类C语言起源、历史
C++(C plus plus Programming Language) - 1983
还是贝尔实验室的人,Bjarne Stroustrup(本贾尼·斯特劳斯特卢普) 在C语言的基础上推出了C++,它扩充和完善了C语言,特别是在面向对象编程方面。一定程度上克服了C语言编写大型程序时的不足。
Python (Python Programming Language)--1991
1989年圣诞节期间,Guido van Rossum 在阿姆斯特丹,Guido van Rossum为了打发圣诞节的无趣,决心开发一个新的脚本解释程序,做为ABC语言的一种继承。之所以选中Python(大蟒蛇的意思)作为该编程语言的名字,是因为他是一个叫Monty Python的喜剧团体的爱好者。第一个Python的版本发布于1991年。
Java(Java Programming Language) - 1995
Sun公司的Patrick Naughton的工作小组研发了Java语言,主要成员是James Gosling(詹姆斯·高斯林)
C(C Sharp Programming Language) - 2000
Microsoft公司的Anders Hejlsberg(安德斯·海尔斯伯格)发明了C,他也是Delphi语言之父。
当然现在还有一些新语言,比如2009年Google的go语言,以及麻省理工的julia等。
3 为什么是Python
Python有哪些优点
1 语法简单 漂亮:我们可以说Python是简约的语言,非常易于读写。在遇到问题时,我们可以把更多的注意力放在问题本身上,而不用花费太多精力在程序语言、语法上。
2 丰富而免费的库:Python社区创造了各种各样的Python库。在他们的帮助下,你可以管理文档,执行单元测试、数据库、web浏览器、电子邮件、密码学、图形用户界面和更多的东西。所有东西包括在标准库,然而,除了它,还有很多其他的库。
3 开源:Python是免费开源的。这意味着我们不用花钱,就可以共享、复制和交换它,这也帮助Python形成了丰富的社区资源,使其更加完善,技术发展更快。
4 Python既支持面向过程,也支持面向对象编程。在面向过程编程中,程序员复用代码,在面向对象编程中,使用基于数据和函数的对象。尽管面向对象的程序语言通常十分复杂,Python却设法保持简洁。
5 Python兼容众多平台,所以开发者不会遇到使用其他语言时常会遇到的困扰。
Python有哪些作用
Python是什么都能做,但是我们学的是数据分析,我们看看在数据分析领域Python能做什么。
数据采集:以Scrapy 为代表的各类方式的爬虫
数据链接:Python有大量各类数据库的第三方包,方便快速的实现增删改查
数据清洗:Numpy、Pandas,结构化和非结构化的数据清洗及数据规整化的利器
数据分析:Scikit-Learn、Scipy,统计分析,科学计算、建模等
数据可视化:Matplotlib、Seaborn等等大量各类可视化的库
所以说总结, 为什么数据科学选的是python, 最重要就是两个原因:
1 语法简单漂亮
2 大量丰富免费的第三方库
B. 数据科学家需要掌握的10个基本统计技术
数据科学家需要掌握的10个基本统计技术
无论您在数据的科学性问题上持哪种看法,都无法忽视数据的持续重要性,也不能轻视分析、组织和情境化数据的能力。 根据大量的就业数据和员工反馈信息统计,在“25个最佳美国就业机会”排行榜中,数据科学家排名第一。毫无疑问,数据科学家所做的具体工作内容将会进一步拓展。随着机器学习等技术变得越来越普遍,深度学习等新兴领域对研究人员和工程师的需求得到了巨大的推动,数据科学家们在创新和技术进步的浪潮中再次崭露头角。
编码能力强大是很重要的,但数据科学并不专职于软件工程(事实上,对Python很熟悉就足够了)。数据科学家生活在编码、统计学和批判性思维的交叉点上。正如乔希·威尔斯(JoshWills)所说的那样:“数据科学家是一个比任何程序员都要好的统计学家,而且比任何统计学家都更擅长编程。”笔者个人知道有太多的软件工程师希望转向数据科学家,并盲目利用机器学习框架TensorFlow或Apache Spark,而不透彻理解背后的统计理论。因此出现了“统计学习”,一个与机器学习有关的理论框架,包含统计到功能分析的一系列专业领域。
为什么学习统计学习?了解各种技术背后的想法是非常重要的,可以让你知道如何以及何时使用它们。由简入繁,首先要理解更简单的方法,才好把握更复杂的方法。准确地评估一种方法的性能,了解它的工作效果多好或者多糟,这一点很重要。此外,这是一个令人兴奋的研究领域,在科学,工业和金融领域有着重要的应用。最终,统计学习是培养现代数据科学家的基本要素。统计学习问题的例子有:
确定前列腺癌的危险因素。
根据记录周期图对录制的音素进行分类。
根据人口统计、饮食和临床测量,预测是否有人会发生心脏病。
自定义垃圾邮件检测系统。
识别手写邮政编码中的数字。
将组织样本分为几个癌症类别之一。
建立人口调查数据中工资与人口变量之间的关系。
统计学习和机器学习之间的差异在于:
机器学习是人工智能的一个子领域。
统计学习是统计学的一个分支。
机器学习更强调大规模应用和预测的准确性。
统计学习强调模型及其可解释性,精确性和不确定性。
1 - 线性回归:
在统计学中,线性回归是一种通过拟合自变量与自变量之间最佳线性关系来预测目标变量的方法。最好的做法是确保每个点的形状和实际观测之间的所有距离之和尽可能小。形状的适合性是“最好的”,因为在形状的选择上没有其他位置会产生较少的误差。线性回归的2种主要类型是简单线性回归和多元线性回归。简单线性回归使用一个独立变量来通过拟合最佳线性关系来预测因变量。多重线性回归使用多个独立变量来通过拟合最佳线性关系来预测因变量。
选择你在日常生活中使用的任何两件相关的东西。如每月支出,月收入和过去三年每月的旅行次数的数据。就需要回答以下问题:
我明年的每月开支是多少?
哪个因素(每月收入或每月旅行次数)在决定我的每月支出时更重要?
月收入和每月旅行如何与每月支出相关联?
2 - 分类:
分类是一种数据挖掘技术,它将类别分配给数据集合,以助进行更准确的预测和分析。有时也称为决策树,分类是用于对非常大的数据集进行分析的几种方法之一。眼下有2大分类技术脱颖而出:Logistic回归和判别分析。
Logistic回归分析是当因变量是二分(二元)时进行的适当的回归分析。像所有回归分析一样,Logistic回归是预测分析。 Logistic回归用于描述数据并解释一个相关二元变量与一个或多个标称、序数、区间或比例级别的独立变量之间的关系。逻辑回归可以检查的问题类型:
每增加一磅的超重和每天吸一包香烟,肺癌的可能性(是vs否)会发生怎样的变化?
体重卡路里摄入量,脂肪摄入量和参与者年龄对心脏病发作是否有影响(有vs无)?
在判别分析中,先验已知2个或更多个组或群或群,并基于所测量的特征将1个或更多个新观察分类到1个已知群中。判别分析在每个响应类别中分别对预测因子X的分布进行建模,然后使用贝叶斯定理将它们翻转为给定X的值的响应类别概率的估计。这样的模型可以是线性的或二次的。
线性判别分析为每个观测值计算“判别分数”,以便对它所处的响应变量类别进行分类。这些分数是通过寻找自变量的线性组合得到的。它假设每个类别内的观察值都来自多变量高斯分布,预测因子的协方差在响应变量Y的所有k水平上是共同的。
二次判别分析提供了一种替代方法。和LDA一样,QDA假定每个Y类的观测值都是从高斯分布中得到的。但是,与LDA不同的是,QDA假定每个类都有其自己的协方差矩阵。换句话说,预测因子不被假定在Y中的每个k水平上具有共同的方差。
3 - 重采样方法:
重采样是从原始数据样本中绘制重复样本的方法。这是统计推断的非参数方法。换句话说,重采样方法不涉及使用通用分布表来计算近似p概率值。
重采样根据实际数据生成唯一的采样分布。它使用实验方法而不是分析方法来生成独特的抽样分布。它产生无偏估计,因为它是基于研究者所研究数据的所有可能结果的无偏样本。为了理解重采样的概念,您应该理解术语Bootstrapping和交叉验证:
Bootstrapping是一种技术,可以帮助您在很多情况下验证预测模型的性能、集成方法、估计模型的偏差和方差。它通过对原始数据进行替换来进行采样,并将“未选择”的数据点作为测试用例。我们可以做这几次,并计算平均分作为我们的模型性能的估计。
另一方面,交叉验证是验证模型性能的一种技术,它是通过将训练数据分成k个部分来完成的。我们以k - 1部分作为训练集,并使用“伸出部分”作为我们的测试集。我们重复k次不同的方式。最后,我们将k分数的平均值作为我们的业绩估计。
通常对于线性模型,普通最小二乘法是考虑将它们适合于数据的主要标准。接下来的3种方法是可以为线性模型的拟合提供更好的预测精度和模型可解释性的替代方法。
4 - 子集选择:
这种方法确定了我们认为与响应相关的p预测因子的一个子集。然后,我们使用子集特征的最小二乘拟合模型。
最佳子集选择:这里我们对每个可能的p预测因子组合进行单独的OLS回归,然后查看最终的模型拟合。算法分为2个阶段:(1)拟合所有包含k预测因子的模型,其中k是模型的最大长度;(2)使用交叉验证的预测误差选择单个模型。使用测试或验证错误非常重要,而不是训练错误来评估模型拟合,因为RSS和R 2单调增加更多的变量。最好的方法是在测试误差估计值上交叉验证并选择具有最高R 2和最低RSS的模型。
向前逐步选择考虑预测因子的一个小得多的子集。它从不含预测因子的模型开始,然后在模型中添加预测因子,直到所有预测因子都在模型中。被添加变量的顺序是变量,其给出对拟合的最大的加法改进,直到没有更多的变量使用交叉验证的预测误差来改进模型拟合。
向后逐步选择开始将模型中的所有预测因子,然后迭代去除最不有用的预测因子。
混合方法遵循向前逐步回归方法,但是,在添加每个新变量之后,该方法还可以去除对模型拟合没有贡献的变量。
5 - 收缩:
这种方法适合一个涉及所有p预测因子的模型,然而,估计系数相对于最小二乘估计向零收缩。这种缩水,又称正规化,具有减少方差的作用。取决于执行什么类型的收缩,其中一些系数可能恰好被估计为零。因此这个方法也执行变量选择。将系数估计收缩为零的两个最着名的技术是岭回归和Lasso。
岭回归类似于最小二乘,通过最小化一个稍微不同的数量估计系数。像OLS一样,岭回归寻求降低RSS的系数估计值,但是当系数接近于零时,它们也会有收缩惩罚。这个惩罚的作用是将系数估计收缩到零。不用进入数学计算,知道岭回归缩小列空间方差最小的特征是有用的。像在主成分分析中一样,岭回归将数据投影到双向空间,然后比高方差分量收缩低方差分量的系数,这相当于最大和最小主分量。
岭回归至少有一个缺点:它包括最终模型中的所有p预测值。犯规条款将使它们中的许多接近于零,但不完全为零。这对于预测准确性来说通常不是问题,但它可能使模型更难以解释结果。 Lasso克服了这个缺点,并且能够迫使一些系数归零,只要s足够小。由于s = 1导致有规律的OLS回归,当s接近0时,系数收缩为零。因此,Lasso回归也执行变量选择。
6 - 维度降低:
维数减少将估计p + 1个系数的问题简化为M + 1个系数的简单问题,其中M
可以将主成分回归描述为从大量变量中导出低维特征集合的方法。数据的第一个主要组成方向是观测值变化最大的。换句话说,第一台PC是尽可能接近数据的一条线。人们可以适应不同的主要组成部分。第二个PC是与第一个PC不相关的变量的线性组合,并且受这个约束的变化最大。这个想法是主要的组成部分使用随后正交方向的数据的线性组合捕获数据中最大的变化。通过这种方式,我们也可以结合相关变量的效果,从可用数据中获取更多信息,而在正则最小二乘中,我们将不得不放弃其中一个相关变量。
我们上面描述的PCR方法包括确定最能代表预测因子的X的线性组合。这些组合(方向)以无监督的方式被识别,因为响应Y不用于帮助确定主要组件方向。也就是说,响应Y不监督主成分的识别,因此不能保证最能解释预测因子的方向对于预测响应(即使经常假设)也是最好的。偏最小二乘法(PLS)是一个监督的替代PCR。与PCR一样,PLS是一种降维方法,它首先识别一组新的较小的特征,这些特征是原始特征的线性组合,然后通过最小二乘法拟合一个线性模型到新的M特征。然而,与PCR不同的是,PLS利用响应变量来识别新的特征。
7 - 非线性模型:
在统计学中,非线性回归是回归分析的一种形式,其中观测数据是由一个函数建模的,该函数是模型参数的非线性组合,并取决于一个或多个自变量。数据通过逐次逼近的方法进行拟合。以下是一些处理非线性模型的重要技巧:
如果实数的函数可以写成区间指示函数的有限线性组合,则称实数为函数。非正式地说,一个阶梯函数是一个只有很多片段的分段常量函数。
分段函数是由多个子函数定义的函数,每个子函数应用于主函数域的一定间隔。分段实际上是表达函数的一种方式,而不是函数本身的一个特征,但是具有额外的限定,可以描述函数的性质。例如,分段多项式函数是在其每个子域上是多项式的函数,但是每个子域上可能是不同的。
样条函数是由多项式分段定义的特殊函数。在计算机图形学中,样条是指分段多项式参数曲线。由于其结构简单,评估方便和准确,以及通过曲线拟合和交互式曲线设计逼近复杂形状的能力,样条曲线是流行的曲线。
广义加性模型是一种线性预测模型,其中线性预测变量线性依赖于某些预测变量的未知光滑函数,兴趣集中在对这些光滑函数的推理上。
8 - 基于树的方法:
基于树的方法可以用于回归和分类问题。这些涉及将预测空间分层或分割成若干简单区域。由于用于分割预测变量空间的分裂规则集合可以在树中进行概括,所以这些类型的方法被称为决策树方法。下面的方法生成多个树,然后结合在一起产生一个单一的共识预测。
套袋(Bagging)是减少预测方差的方法,通过使用重复组合来生成原始数据集中的训练数据,从而生成与原始数据相同的多样性。通过增加你的训练集的大小,你不能提高模型的预测力,只是减少方差,勉强把预测调整到预期的结果。
提升(Boosting)是一种使用几种不同的模型计算产出的方法,然后使用加权平均方法对结果进行平均。通过改变你的加权公式,结合这些方法的优点和缺陷,你可以使用不同的狭义调整模型,为更广泛的输入数据提供一个很好的预测力。
随机森林(random forest )算法实际上非常类似于套袋。你也可以绘制训练集的随机bootstrap样本。但是,除了自举样本之外,还可以绘制随机子集来训练单个树;在套袋中,你给每个树一套完整功能。由于随机特征选择,与常规套袋相比,树木之间的相互独立性更高,这通常会带来更好的预测性能(由于更好的方差偏差权衡),而且速度更快,因为每棵树只能从功能的一个子集。
9 - 支持向量机:
SVM是机器学习中监督学习模型中的一种分类技术。通俗地说,它涉及于找到超平面(2D中的线,3D中的平面和更高维中的超平面,更正式地说,超平面是n维空间中的n维空间)最大保证金从本质上讲,它是一个约束优化问题,其边界被最大化,受限于它对数据进行了完美的分类(硬边缘)。
这种“支持”这个超平面的数据点被称为“支持向量”。对于两类数据不能线性分离的情况,这些点被投影到可能线性分离的分解(高维)空间。涉及多个类的问题可以分解为多个一对一或者一对二的分类问题。
10 - 无监督学习:
到目前为止,我们只讨论了监督学习技术,其中组是已知的,提供给算法的经验是实际实体和它们所属的组之间的关系。当数据的组(类别)未知时,可以使用另一组技术。它们被称为无监督的,因为它会留在学习算法中以找出所提供的数据中的模式。聚类是无监督学习的一个例子,其中不同的数据集被聚类为密切相关的项目组。下面是最广泛使用的无监督学习算法的列表:
主成分分析通过识别一组具有最大方差和相互不相关的特征的线性组合来帮助产生数据集的低维表示。这种线性维度技术有助于理解变量在无监督环境下的潜在相互作用。
k-Means聚类:根据到群集质心的距离将数据分为k个不同的集群。
分层集群:通过创建集群树来构建集群的多级分层结构。
以上是一些基本的统计技术的简单解释与说明,可以帮助数据科学项目经理和主管人员更好地理解他们的数据科学小组背后隐藏的内容。实际上,一些数据科学小组纯粹通过python和R库运行算法。他们中的大多数甚至不必考虑潜在的数学问题。但是,能够理解统计分析的基础知识可以为您的团队提供更好的方法。
C. Python 最重要的库都有哪些
第一、NumPy
NumPy是Numerical
Python的简写,是Python数值计算的基石。它提供多种数据结构、算法以及大部分涉及Python数值计算所需的接口。NumPy还包括其他内容:
①快速、高效的多维数组对象ndarray
②基于元素的数组计算或数组间数学操作函数
③用于读写硬盘中基于数组的数据集的工具
④线性代数操作、傅里叶变换以及随机数生成
除了NumPy赋予Python的快速数组处理能力之外,NumPy的另一个主要用途是在算法和库之间作为数据传递的数据容器。对于数值数据,NumPy数组能够比Python内建数据结构更为高效地存储和操作数据。
第二、pandas
pandas提供了高级数据结构和函数,这些数据结构和函数的设计使得利用结构化、表格化数据的工作快速、简单、有表现力。它出现于2010年,帮助Python成为强大、高效的数据分析环境。常用的pandas对象是DataFrame,它是用于实现表格化、面向列、使用行列标签的数据结构;以及Series,一种一维标签数组对象。
pandas将表格和关系型数据库的灵活数据操作能力与Numpy的高性能数组计算的理念相结合。它提供复杂的索引函数,使得数据的重组、切块、切片、聚合、子集选择更为简单。由于数据操作、预处理、清洗在数据分析中是重要的技能,pandas将是重要主题。
第三、matplotlib
matplotlib是最流行的用于制图及其他二维数据可视化的Python库,它由John D.
Hunter创建,目前由一个大型开发者团队维护。matplotlib被设计为适合出版的制图工具。
对于Python编程者来说也有其他可视化库,但matplotlib依然使用最为广泛,并且与生态系统的其他库良好整合。
第四、IPython
IPython项目开始于2001年,由Fernando
Pérez发起,旨在开发一个更具交互性的Python解释器。在过去的16年中,它成为Python数据技术栈中最重要的工具之一。
尽管它本身并不提供任何计算或数据分析工具,它的设计侧重于在交互计算和软件开发两方面将生产力最大化。它使用了一种执行-探索工作流来替代其他语言中典型的编辑-编译-运行工作流。它还提供了针对操作系统命令行和文件系统的易用接口。由于数据分析编码工作包含大量的探索、试验、试错和遍历,IPython可以使你更快速地完成工作。
第五、SciPy
SciPy是科学计算领域针对不同标准问题域的包集合。以下是SciPy中包含的一些包:
①scipy.integrate数值积分例程和微分方程求解器
②scipy.linalg线性代数例程和基于numpy.linalg的矩阵分解
③scipy.optimize函数优化器和求根算法
④scipy.signal信号处理工具
⑤scipy.sparse稀疏矩阵与稀疏线性系统求解器
SciPy与Numpy一起为很多传统科学计算应用提供了一个合理、完整、成熟的计算基础。
第六、scikit-learn
scikit-learn项目诞生于2010年,目前已成为Python编程者首选的机器学习工具包。仅仅七年,scikit-learn就拥有了全世界1500位代码贡献者。其中包含以下子模块:
①分类:SVM、最近邻、随机森林、逻辑回归等
②回归:Lasso、岭回归等
③聚类:K-means、谱聚类等
④降维:PCA、特征选择、矩阵分解等
⑤模型选择:网格搜索、交叉验证、指标矩阵
⑥预处理:特征提取、正态化
scikit-learn与pandas、statsmodels、IPython一起使Python成为高效的数据科学编程语言。
D. python语言的用途
一、Web开发
Python诞生时间比Web还早,由于Python是一种解释型的脚本语言,开发效率很高,所以非常适合用于Web开发,像Django和Flask这样基于Python的Web框架,最近在Web开发中变得越来越流行。
二、网络爬虫
许多人喜欢编程的原因,网络爬虫是Python非常常用的一个场景,带动了整个Python语言的发展,现在使用Python收集网上的资源比以前容易多了,比如可以再各大网站爬取商品信息、爬取音乐某一类歌曲的所有评论、按条件筛选获得豆瓣的电影书籍信息并生成表格。
三、人工智能
是非常火的一个方面,让Python语言充满了无限的潜力,并且Python非常适合人工智能领域,比如numpy、scipy可以做数值计算,sklearn做机器学习,pybrain做神经网络,matplotlib将数据可视化,数据挖掘、机器学习、神经网络、深度学习等方面都是主流的编程语言,得到了广泛的支持和应用。
四、数据分析
Python有完备的生态环境,大数据分析中涉及到的分布式计算、数据可视化、数据库操作等,Python都有成熟的模块可以完成其功能,无论对于数据科学家还是对于数据工程师而言,都是十分便利的。
五、自动化运维
Python能满足绝大部分自动化运维的需求,既能做后端C/S架构,还能用Web框架快速开发处Web界面,当开发者有能力做出一套运维自动化系统的时候,自身的价值就会大大体现出来。
E. 有了处理excel数据的R语言代码如何应用
数据科学和机器学习是该时代最需求的技术,这一需求促使每个人都学习不同的库和软件包以实现它们。这篇博客文章将重点介绍用于数据科学和机器学习的Python库。这些是您掌握市场上最被炒作的两项技能的库。
以下是此博客中将涉及的主题列表:
数据科学与机器学习导论为什么要使用Python进行数据科学和机器学习?用于数据科学和机器学习的Python库用于统计的Python库用于可视化的Python库用于机器学习的Python库深度学习的Python库用于自然语言处理的Python库数据科学与机器学习导论
当我开始研究数据科学和机器学习时,总是有这个问题困扰我最大。是什么导致围绕这两个话题的热门话题?
嗡嗡声与我们生成的数据量有很大关系。数据是驱动ML模型所需的燃料,并且由于我们处在大数据时代,因此很清楚为什么将数据科学视为该时代最有希望的工作角色!
我会说数据科学和机器学习是技能,而不仅仅是技术。它们是从数据中获得有用的见解并通过建立预测模型解决问题所需的技能。
从形式上来讲,这就是两者的定义方式。
数据科学是从数据中提取有用信息以解决实际问题的过程。
机器学习是使机器学习如何通过提供大量数据来解决问题的过程。
这两个域是高度互连的。
机器学习是数据科学的一部分,它利用ML算法和其他统计技术来了解数据如何影响和发展业务。
为什么要使用Python?
Python在用于实现机器学习和数据科学的最流行的编程语言中排名第一。让我们了解为什么。
易于学习:Python使用非常简单的语法,可用于实现简单的计算,例如将两个字符串添加到复杂的过程中,例如构建复杂的ML模型。更少的代码:实施数据科学和机器学习涉及无数的算法。得益于Python对预定义包的支持,我们不必编写算法。为了使事情变得更容易,Python提供了一种“在编码时检查”的方法,从而减轻了测试代码的负担。预建库:Python有100多个预建库,用于实现各种ML和深度学习算法。因此,每次您要在数据集上运行算法时,只需要做的就是用单个命令安装和加载必要的程序包。预先构建的库的示例包括NumPy,Keras,Tensorflow,Pytorch等。与平台无关:Python可以在多个平台上运行,包括Windows,macOS,Linux,Unix等。在将代码从一个平台转移到另一个平台时,您可以使用诸如PyInstaller之类的软件包,该软件包将解决所有依赖性问题。大量的社区支持:除拥有大量支持者外,Python还拥有多个社区,团体和论坛,程序员可以在其中发布他们的错误并互相帮助。Python库
Python在AI和ML领域普及的唯一最重要的原因是,Python提供了数千个内置库,这些库具有内置功能和方法,可以轻松地进行数据分析,处理,处理,建模等。 。在下一节中,我们将讨论以下任务的库:
统计分析数据可视化数据建模与机器学习深度学习自然语言处理(NLP)统计分析
统计是数据科学和机器学习的最基本基础之一。所有ML和DL算法,技术等均基于统计的基本原理和概念。
Python附带了大量的库,仅用于统计分析。在此博客中,我们将重点介绍提供内置函数以执行最复杂的统计计算的顶级统计软件包。
这是用于统计分析的顶级Python库的列表:
NumPySciPyPandas统计模型NumPy
NumPy或数值Python是最常用的Python库之一。该库的主要功能是它支持用于数学和逻辑运算的多维数组。NumPy提供的功能可用于索引,分类,整形和传输图像和声波,这些图像和声波是多维实数数组。
以下是NumPy的功能列表:
执行简单到复杂的数学和科学计算对多维数组对象的强大支持以及用于处理数组元素的函数和方法的集合傅里叶变换和数据处理例程执行线性代数计算,这对于机器学习算法(例如线性回归,逻辑回归,朴素贝叶斯等)是必需的。SciPy
SciPy库建立在NumPy之上,是一组子软件包的集合,可帮助解决与统计分析有关的最基本问题。SciPy库用于处理使用NumPy库定义的数组元素,因此它通常用于计算使用NumPy无法完成的数学方程式。
这是SciPy的功能列表:
它与NumPy数组一起使用,提供了一个平台,提供了许多数学方法,例如数值积分和优化。它具有可用于矢量量化,傅立叶变换,积分,插值等子包的集合。提供完整的线性代数函数堆栈,这些函数可用于更高级的计算,例如使用k-means算法的聚类等。提供对信号处理,数据结构和数值算法,创建稀疏矩阵等的支持。Pandas
Pandas是另一个重要的统计库,主要用于统计,金融,经济学,数据分析等广泛领域。该库依赖于NumPy数组来处理Pandas数据对象。NumPy,Pandas和SciPy在执行科学计算,数据处理等方面都严重依赖彼此。
我经常被要求在Pandas,NumPy和SciPy中选择最好的,但是,我更喜欢使用它们,因为它们彼此之间非常依赖。Pandas是处理大量数据的最佳库之一,而NumPy对多维数组具有出色的支持,另一方面,Scipy提供了一组执行大多数统计分析任务的子包。
以下是Pandas的功能列表:
使用预定义和自定义索引创建快速有效的DataFrame对象。它可用于处理大型数据集并执行子集,数据切片,索引等。提供用于创建Excel图表和执行复杂数据分析任务的内置功能,例如描述性统计分析,数据整理,转换,操作,可视化等。提供对处理时间序列数据的支持统计模型
StatsModels Python软件包建立在NumPy和SciPy之上,是创建统计模型,数据处理和模型评估的最佳选择。除了使用SciPy库中的NumPy数组和科学模型外,它还与Pandas集成以进行有效的数据处理。该库以统计计算,统计测试和数据探索而闻名。
以下是StatsModels的功能列表:
NumPy和SciPy库中找不到的执行统计检验和假设检验的最佳库。提供R样式公式的实现,以实现更好的统计分析。它更隶属于统计人员经常使用的R语言。由于它广泛支持统计计算,因此通常用于实现广义线性模型(GLM)和普通最小二乘线性回归(OLM)模型。包括假设检验(零理论)在内的统计检验是使用StatsModels库完成的。因此,它们是用于统计分析的最常用和最有效的Python库。现在让我们进入数据科学和机器学习中的数据可视化部分。
数据可视化
图片说出一千多个单词。我们都听说过关于艺术方面的引用,但是,对于数据科学和机器学习也是如此。
数据可视化就是通过图形表示有效地表达来自数据的关键见解。它包括图形,图表,思维导图,热图,直方图,密度图等的实现,以研究各种数据变量之间的相关性。
在本博客中,我们将重点介绍最好的Python数据可视化软件包,这些软件包提供内置函数来研究各种数据功能之间的依赖关系。
这是用于数据可视化的顶级Python库的列表:
Matplotlib是Python中最基本的数据可视化软件包。它支持各种图形,例如直方图,条形图,功率谱,误差图等。它是一个二维图形库,可生成清晰明了的图形,这对于探索性数据分析(EDA)至关重要。
这是Matplotlib的功能列表:
Matplotlib通过提供选择合适的线条样式,字体样式,格式化轴等功能,使绘制图形变得极为容易。创建的图形可帮助您清楚地了解趋势,模式并进行关联。它们通常是推理定量信息的工具。它包含Pyplot模块,该模块提供了与MATLAB用户界面非常相似的界面。这是Matplotlib软件包的最佳功能之一。提供面向对象的API模块,以使用GUI工具(例如Tkinter,wxPython,Qt等)将图形集成到应用程序中。Matplotlib
Matplotlib库构成了Seaborn库的基础。与Matplotlib相比,Seaborn可用于创建更具吸引力和描述性的统计图。除了对数据可视化的广泛支持外,Seaborn还附带一个面向数据集的内置API,用于研究多个变量之间的关系。
以下是Seaborn的功能列表:
提供用于分析和可视化单变量和双变量数据点以及将数据与其他数据子集进行比较的选项。支持针对各种目标变量的线性回归模型的自动统计估计和图形表示。通过提供执行高级抽象的功能,构建用于构造多图网格的复杂可视化。带有许多内置主题,可用于样式设置和创建matplotlib图Ploty
Ploty是最知名的图形Python库之一。它提供了交互式图形,以了解目标变量和预测变量之间的依赖性。它可以用于分析和可视化统计,财务,商业和科学数据,以生成清晰明了的图形,子图,热图,3D图表等。
这是使Ploty成为最佳可视化库之一的功能列表:
它具有30多种图表类型,包括3D图表,科学和统计图,SVG地图等,以实现清晰的可视化。借助Ploty的Python API,您可以创建由图表,图形,文本和Web图像组成的公共/私有仪表板。使用Ploty创建的可视化以JSON格式序列化,因此您可以在R,MATLAB,Julia等不同平台上轻松访问它们。它带有一个称为Plotly Grid的内置API,该API可让您直接将数据导入Ploty环境。Bokeh
Bokeh是Python中交互性最强的库之一,可用于为Web浏览器构建描述性的图形表示形式。它可以轻松处理庞大的数据集并构建通用图,从而有助于执行广泛的EDA。Bokeh提供定义最完善的功能,以构建交互式绘图,仪表板和数据应用程序。
这是Bokeh的功能列表:
使用简单的命令帮助您快速创建复杂的统计图支持HTML,笔记本和服务器形式的输出。它还支持多种语言绑定,包括R,Python,lua,Julia等。Flask和django也与Bokeh集成在一起,因此您也可以在这些应用程序上表达可视化效果它提供了对转换为其他库(如matplotlib,seaborn,ggplot等)中编写的可视化文件的支持因此,这些是用于数据可视化的最有用的Python库。现在,让我们讨论用于实现整个机器学习过程的顶级Python库。
机器学习
创建可以准确预测结果或解决特定问题的机器学习模型是任何数据科学项目中最重要的部分。
实施ML,DL等涉及对数千行代码进行编码,当您要创建通过神经网络解决复杂问题的模型时,这可能变得更加麻烦。但值得庆幸的是,我们无需编写任何算法,因为Python随附了多个软件包,仅用于实现机器学习技术和算法。
在此博客中,我们将重点介绍提供内置函数以实现所有ML算法的顶级ML软件包。
以下是用于机器学习的顶级Python库的列表:
Scikit-learnXGBoostElI5Scikit-learn
Scikit-learn是最有用的Python库之一,是用于数据建模和模型评估的最佳库。它附带了无数功能,其唯一目的是创建模型。它包含所有有监督的和无监督的机器学习算法,并且还具有用于集合学习和促进机器学习的定义明确的功能。
以下是Scikit学习的功能列表:
提供一组标准数据集,以帮助您开始使用机器学习。例如,着名的Iris数据集和Boston House Price数据集是Scikit-learn库的一部分。用于执行有监督和无监督机器学习的内置方法。这包括解决,聚类,分类,回归和异常检测问题。带有用于特征提取和特征选择的内置功能,可帮助识别数据中的重要属性。它提供了执行交叉验证以评估模型性能的方法,还提供了用于优化模型性能的参数调整功能。XGBoost
XGBoost代表“极端梯度增强”,它是执行Boosting Machine Learning的最佳Python软件包之一。诸如LightGBM和CatBoost之类的库也同样配备了定义明确的功能和方法。建立该库的主要目的是实现梯度提升机,该梯度提升机用于提高机器学习模型的性能和准确性。
以下是其一些主要功能:
该库最初是用C ++编写的,被认为是提高机器学习模型性能的最快,有效的库之一。核心的XGBoost算法是可并行化的,并且可以有效地利用多核计算机的功能。这也使该库足够强大,可以处理大量数据集并跨数据集网络工作。提供用于执行交叉验证,参数调整,正则化,处理缺失值的内部参数,还提供scikit-learn兼容的API。该库经常在顶级的数据科学和机器学习竞赛中使用,因为它一直被证明优于其他算法。ElI5
ELI5是另一个Python库,主要致力于改善机器学习模型的性能。该库相对较新,通常与XGBoost,LightGBM,CatBoost等一起使用,以提高机器学习模型的准确性。
以下是其一些主要功能:
提供与Scikit-learn软件包的集成,以表达功能重要性并解释决策树和基于树的集成的预测。它分析并解释了XGBClassifier,XGBRegressor,LGBMClassifier,LGBMRegressor,CatBoostClassifier,CatBoostRegressor和catboost所做的预测。它提供了对实现多种算法的支持,以便检查黑盒模型,其中包括TextExplainer模块,该模块可让您解释由文本分类器做出的预测。它有助于分析包括线性回归器和分类器在内的scikit学习通用线性模型(GLM)的权重和预测。深度学习
机器学习和人工智能的最大进步是通过深度学习。随着深度学习的介绍,现在可以构建复杂的模型并处理庞大的数据集。幸运的是,Python提供了最好的深度学习软件包,可帮助构建有效的神经网络。
在此博客中,我们将专注于提供用于实现复杂的神经网络的内置功能的顶级深度学习软件包。
以下是用于深度学习的顶级Python库的列表:
TensorFlow是用于深度学习的最佳Python库之一,是一个用于跨各种任务进行数据流编程的开源库。它是一个符号数学库,用于构建强大而精确的神经网络。它提供了直观的多平台编程界面,可在广阔的领域中实现高度扩展。
以下是TensorFlow的一些关键功能:
它允许您构建和训练多个神经网络,以帮助适应大型项目和数据集。除支持神经网络外,它还提供执行统计分析的功能和方法。例如,它带有用于创建概率模型和贝叶斯网络(例如伯努利,Chi2,Uniform,Gamma等)的内置功能。该库提供了分层的组件,这些组件可以对权重和偏差执行分层的操作,并且还可以通过实施正则化技术(例如批标准化,丢包等)来提高模型的性能。它带有一个称为TensorBoard的可视化程序,该可视化程序创建交互式图形和可视化图形以了解数据功能的依赖性。Pytorch
Pytorch是一个基于Python的开源科学计算软件包,用于在大型数据集上实施深度学习技术和神经网络。Facebook积极地使用此库来开发神经网络,以帮助完成各种任务,例如面部识别和自动标记。
以下是Pytorch的一些主要功能:
提供易于使用的API与其他数据科学和机器学习框架集成。与NumPy一样,Pytorch提供了称为Tensors的多维数组,与NumPy不同,它甚至可以在GPU上使用。它不仅可以用于对大型神经网络进行建模,而且还提供了一个界面,具有200多种用于统计分析的数学运算。创建动态计算图,以在代码执行的每个点建立动态图。这些图有助于时间序列分析,同时实时预测销售量。Keras
Keras被认为是Python中最好的深度学习库之一。它为构建,分析,评估和改进神经网络提供全面支持。Keras基于Theano和TensorFlow Python库构建,该库提供了用于构建复杂的大规模深度学习模型的附加功能。
以下是Keras的一些关键功能:
为构建所有类型的神经网络提供支持,即完全连接,卷积,池化,循环,嵌入等。对于大型数据集和问题,可以将这些模型进一步组合以创建完整的神经网络它具有执行神经网络计算的内置功能,例如定义层,目标,激活功能,优化器和大量工具,使处理图像和文本数据更加容易。它带有一些预处理的数据集和经过训练的模型,包括MNIST,VGG,Inception,SqueezeNet,ResNet等。它易于扩展,并支持添加包括功能和方法的新模块。自然语言处理
您是否曾经想过Google如何恰当地预测您要搜索的内容?Alexa,Siri和其他聊天机器人背后的技术是自然语言处理。NLP在设计基于AI的系统中发挥了巨大作用,该系统有助于描述人类语言与计算机之间的交互。
在此博客中,我们将重点介绍提供内置功能以实现基于高级AI的系统的顶级自然语言处理包。
这是用于自然语言处理的顶级Python库的列表:
NLTKspaCyGensimNLTK(自然语言工具包)
NLTK被认为是分析人类语言和行为的最佳Python软件包。NLTK库是大多数数据科学家的首选,它提供易于使用的界面,其中包含50多种语料库和词汇资源,有助于描述人与人之间的互动以及构建基于AI的系统(例如推荐引擎)。
这是NLTK库的一些关键功能:
提供一套数据和文本处理方法,用于文本分析的分类,标记化,词干,标记,解析和语义推理。包含用于工业级NLP库的包装器,以构建复杂的系统,以帮助进行文本分类并查找人类语音的行为趋势和模式它带有描述计算语言学实现的综合指南和完整的API文档指南,可帮助所有新手开始使用NLP。它拥有庞大的用户和专业人员社区,它们提供全面的教程和快速指南,以学习如何使用Python进行计算语言学。spaCy
spaCy是一个免费的开源Python库,用于实现高级自然语言处理(NLP)技术。当您处理大量文本时,重要的是要了解文本的形态学意义以及如何将其分类以理解人类语言。通过spaCY可以轻松实现这些任务。
这是spaCY库的一些关键功能:
除了语言计算外,spaCy还提供了单独的模块来构建,训练和测试统计模型,从而更好地帮助您理解单词的含义。带有各种内置的语言注释,可帮助您分析句子的语法结构。这不仅有助于理解测试,还有助于查找句子中不同单词之间的关系。它可用于对包含缩写和多个标点符号的复杂嵌套令牌应用令牌化。除了非常强大和快速之外,spaCy还提供对51种以上语言的支持。Gensim
Gensim是另一个开源Python软件包,其建模旨在从大型文档和文本中提取语义主题,以通过统计模型和语言计算来处理,分析和预测人类行为。无论数据是原始数据还是非结构化数据,它都有能力处理庞大的数据。
以下是Genism的一些主要功能:
它可用于构建可通过理解每个单词的统计语义来有效分类文档的模型。它带有诸如Word2Vec,FastText,潜在语义分析之类的文本处理算法,这些算法研究文档中的统计共现模式,以过滤掉不必要的单词并构建仅具有重要功能的模型。提供可以导入并支持各种数据格式的I / O包装器和读取器。它具有简单直观的界面,可供初学者轻松使用。API学习曲线也很低,这解释了为什么许多开发人员喜欢此库。
F. R vs Python,谁才是数据科学的最佳语言
可以去这里看:
http://blog.csdn.net/pinellina/article/details/50781531
从定位角度看,R致力于提供更好的,对用户友好的数据分析、统计分析和绘图模型;而Python则强调生产效率和代码的可读性。
双方的用户群也有一定的差异。R主要用于学术和研究领域,如今正在快速拓展其企业市场的运用。Python的使用者,是那些想深入钻研数据分析或者应用统计技术的程序员,以及向数据科学寻求帮护的开发者。用一句话总结:“越接近统计研究跟数据分析人,越倾向R;越接近工程开发工程环境的人,越倾向Python”。
R和Python都得到大量的社区支持,包括邮件列表(Mailing Lists)、用户贡献的文档、以及Stackoverflow网站。此外,R还可以从研究人员、数据科学家、统计学家和数量分析专家那里得到更多的支持;而Python则从开发者和程序员那里得到的支持。
在灵活性方面,在R中使用复杂的公式很容易。各种各样的统计检验和统计模型都是现成的并且容易使用;相比R,Python在完成以前没有做过的新奇的事情上,很灵活,开发人员也会用它写网站或其它应用的脚本。
关于易学习性,开始学习R时有一个陡峭的学习曲线,一旦了解了最基本知识,就能很容易地学习更高级的知识。因此,对于有经验的程序员,R并不难。建议R的学习者查看DataCamp上的练习和教程。
由于Python看重可读性和易用性,使得它的学习曲线相对比较低并且平缓。因此,对于初级程序员,Python 被认为是一个很好的编程语言。对于Python学习者的建议是,尝试用《笨办法学Python》学习的同时看视频做练习。
两者都有自己的代码库。CRAN(The Comprehensive R Archive Network)是一个很大的R包库,用户很容易为其贡献代码。R包是一个包含R函数、数据和编译代码的集合,R包在R中用一行代码即可安装。PyPi(Python Package Index)是Python软件库,用户可以为PyPi贡献代码,但实践起来有点困难。
计算机科学教授Norm Matloff 曾说过,“Python并未建立起一个能与CRAN媲美的巨大的代码库,R在这方面领先巨大。但是,统计学并不是Python的中心任务。”
按任务类型划分,做探索性研究时,R语言很适合初学者。几行代码便可写出统计模型;而作为一个完整成熟的程序语言,Python是为产品使用进行算法执行的一个工具。
数据处理能力上,使用R进行数据分析很容易上手,因为它具有庞大数量的包、方便使用的检验以及在使用公式方面的优势。做基本数据分析时,R语言更方便,不需要额外安装包,大的数据库需要使用类似data.table和dplyr包。过去,Python数据分析包的幼年期曾是个问题,但是现在已经得到很大的改善,用Python进行数据分析时,你需要使用NumPy、Pandas和其它的程序包。
如何上手也是比拼的一个方面。R的集成开发环境(IDE)可以选择RStudio。R最受欢迎的程序包有:dply、plyr和data.table(易于操作数据),stringr(易于操作字符串),zoo(处理规则和不规则时间序列),ggvis、lattice和ggplot2(数据可视化),caret(机器学习),建议初学者查看DataCamp上的课程和教程。
Python的集成开发环境(IDE)有很多,其中Spyder和Python Notebook最受欢迎。建议初学者查看Rodeo(被称为“Python到数据科学IDE”)。Python最受欢迎的程序包有:pandas (易于操作数据),SciPy/NumPy(科学计算),sckikit-learn(机器学习),matplotlib(用于作图),statsmodels(数据探索、统计模型估计、统计检验和单元测试)。
G. Python的就业前景怎么样
Python未来的前景怎么样?就业岗位多不多?薪资高不高?今天就来看一下详细分析。
1、为什么这么多人学Python呢?
很多初学者都听说python很火,可是为啥要学Python,下面谈谈我的感悟。
Python语言是我目前为止用的最爽的语言,因为它真的很优美。虽然C、C++、Java也非常的强大和伟大,但是每一种语言伟大的背后都是有一定的时代背景。
Python被广泛的用在Web开发、运维自动化、测试自动化、数据挖掘等多个行业和领域。
一项专业调查显示,75%的受访者将Python视为主要开发语言,反之,其他25%受访者则将其视为辅助开发语言。
将Python作为主要开发语言的开发者数量逐年递增,这表明Python正在成为越来越多开发者的开发语言选择。
那么未来10年到底哪种语言会独领风骚,笑傲江湖,我不得而知,但是未来10年一定是人工智能,万物互联的时代,现在AI、VR、无人驾驶汽车、无人机、智能家居离我们越来越近了。
未来10年将是大数据,人工智能爆发的时代,到时将会有大量的数据需要处理,而Python最大的优势,就是对数据的处理,有着得天独厚的优势,我相信未来的10年,Python会越来越火。
2、Python岗位需求量10万
从职友集最新Python招聘岗位需求来看,Python工程师的岗位需求量巨大,并且岗位需求量还在呈现上涨的趋势。
全国Python岗位需求量接近10万;
北京岗位需求量居首位为20890个占比21.17%,
上海Python工程师岗位需求量居第二位为12843个占比13.02%,
其次是深圳、杭州、广州等一线城市合计占比16.53%。
从下图可知,Python 相关职位的需求量,依然集中在三大经济圈,特别是在北京、上海、深圳这几个城市。
以上为Python各方向薪资
因为Python在大数据和人工智能领域的爆发性发展, 导致Python方向岗位的薪水在水涨船高,从数据分析来看,月薪在20K-50K不等。
学习Python的程序员,除了能从事Python开发工程师、人工智能工程师、数据分析师、Python自动化测试外,也能够朝着Python游戏开发工程师、SEO工程师、Linux运维工程师等方向发展,发展方向较为多元化。
说这么多之后,你会发现,Python的发展前景十分广阔。并且Python是一门真正意义上的全栈语言,即使目前世界上使用最广泛的Java语言,在很多方面与Python相比也逊色很多!
H. Python五大应用领域是什么
【导读】伴随着国家战略对“新基建”施行提上日程,大数据将会得到进一步推行和运用。那么,作为大数据开发言语之一的Python言语,在哪些领域有重要运用呢?今天就跟随小编一起来了解下吧!
一、网络爬虫
网络爬虫是Python比较常用的一个场景,国际上,google在前期大量地运用Python言语作为网络爬虫的根底,带动了整个Python言语的运用发展。
二、数据处理
Python有很齐备的生态环境。"大数据"分析中涉及到的分布式核算、数据可视化、数据库操作等,Python中都有成熟的模块能够挑选完结其功能。关于Hadoop-MapRece和Spark,都能够直接运用Python完结核算逻辑,这不管关于数据科学家仍是关于数据工程师而言都是十分便当的。
三、web开发
Python的诞生前史比Web还要早,由于Python是一种解说型的脚本言语,开发效率高,所以十分适合用来做Web开发。
Django 是 Python 编程言语驱动的一个开源模型-视图-控制器(MVC)风格的 Web 运用程序结构。运用
Django,咱们在几分钟之内就能够创建高品质、易维护、数据库驱动的运用程序。
四、数据分析
关于数据分析师来说,不只要自己理解数据背面的含义,而且还要给更直地展现数据的含义。
Scipy是一组专门解决科学核算中各种规范问题域的包的集合。Numpy是python科学核算的根底包。Pandas处理上千万的数据是一挥而就的工作,同时随后咱们也将看到它比SQL有更强的表达能力,能够做很多复杂的操作,要写的code也更少。
五、人工智能
人工智能是现在十分火的一个方向,AI热潮让Python言语的未来充满了无限的潜力。现在释放出来的几个十分有影响力的AI结构,大多是Python的实现,为什么呢?
在人工智能大领域领域内的数据发掘、机器学习、神经网络、深度学习等方面都是主流的编程言语,得到广泛的支持和运用。人工智能的核心算法大部分仍是依赖于C/C++的,由于是核算密集型,需求十分精细的优化,还需求GPU、专用硬件之类的接口,这些都只要C/C++能做到。
关于Python五大应用领域是什么,小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚。