㈠ 随机游走的随机游走模型
随机游走本来是“物理上布朗运动”相关的分子,还是微观粒子的运动形成的一个模型。
现在过多的谈到随机游走假说是数理金融中最重要的假设,它把有效市场的思想与物理学中的布朗运动联系起来,由此而来的一整套的随机数学方法成为构建数理金融的基石。(其研究的机理已经在股票研究中应用很广泛) 随机游走模型的提出是与证券价格的变动模式紧密联系在一起的。最早使用统计方法分析收益率的着作是在 1900年由路易·巴舍利耶(Louis Bachelier)发表的,他把用于分析赌博的方法用于股票、债券、期货和期权。在巴舍利耶的论文中,其具有开拓性的贡献就在于认识到随机游走过程是布 朗运动。1953年,英国统计学家肯德尔在应用时间序列分析研究股票价格波动并试图得出股票价格波动的模式时,得到了一个令人大感意外的结论:股票价格没 有任何规律可寻,它就象“一个醉汉走步一样,几乎宛若机会之魔每周仍出一个随机数字,把它加在目前的价格上,以此决定下一周的价格。”即股价遵循的是随机 游走规律。
随机游走模型有两种,其数学表达式为 :
Y t =Y t-1 +e t ①
Y t =α+Y t-1 +e t ②
式中:
Y t 是时间序列(用股票价格或股票价格的自然对数表示);
e t 是随机项,E(e t )=0;Var(e t )=σ 2 ;
α是常数项。
模型①称为“零漂移的随机游走模型”,即当天的股票价格是在前一天价格的基础上进行随机变动。股票价格差全部包含在随机项 e t 中。
模型②称为“α漂移的随机游走模型”,即当天的股票价格是在前一天价格的基础上先进行一个固定的α漂移,再进行随机变动。股票价格差包括两部分,一部分是固定变动α,另一部分也是随机项 e t 。
由以上随机游走模型可以看出,证券价格的时间序列将呈现随机状态,不会表现出某种可观测或统计的确定趋势。即证券价格的变动是不可预测的,这恰恰是随机 游走模型所揭示的证券价格变动 规律 的中心思想。那么,随机游走模型下所确定的证券价格的这一变动模式与资本市场的效率性之间是什么关系呢?随机变动的证券价格,不仅不是市场非理性的证据, 而正是众多理性的投资者开发有关信息,并对其做出反映的结果。事实上,如果证券价格的变动是可以预测的,那才真正说明市场的无效率和非理性。也就是说,若 证券市场是有效率的,证券价格应当真正符合随机游走模型。
t)=0,而这正是独立随机过程所必须的条件。然而当H≠1/2时,不管t取何值,C(t)≠0。分数布朗运动的这一特征,导致了状态持续性或逆状态持续性。
当H>1/2时,存在状态持续性,即在某一时刻t以前存在上升(或下降)趋势隐含着在时刻t以后总体上也存在着上升(或下降)的趋势;反之,当H<1/2 时存在逆状态持续性,即在某一时刻t以前存在上升(或下降)趋势隐含着在时刻t以后总体上也存在着下降(或上升)的趋势
进一步地,应用R/S分析法,可以确定信息的两个重要方面,Hurst指数H和平均的周期长度。周期的存在对于进一步的讨论分析具有重要影响。当H≠1 /2时,概率分布不是正态分布;当1/2<H<1时,时间序列是分形。分维时间序列不同于随机游走,它是有偏的随机过程,其偏离的程度取决于H大于1/2 的程度,并且随着H逐步逼近1状态持续性逐步增强。
值得指出的是,R/S分析法是十分有效的工具,不必假定潜在的分布是高斯分布。H=1/2并不能说明时间序列是一个高斯随机游走,仅表明不存在长期记忆。 如果随机游走不再适用,那么许多数量分析的方法将失去效用,尤其是CAPM和以方差或波动程度度量的风险概念。
通过以上的论述,得到下列基本结论:
1.对有效市场假说,α必须始终等于2;而对分形市场分析,α可以在1到2之间变化。这是有效市场假说与分形市场分析对市场特性认识的主要区别。正是由于α的分数维性质充分反映了市场本身所具有的特性
2.分形市场分析不必依赖于独立、正态或方差有限的假设。
3.应用R/S分析法,可以确定信息的两个重要方面,Hurst指数H和平均的周期长度。
4.公众对于信息以非线性方式作出反应,因而有偏的随机游走是市场的常态,表现为分数布朗运动。
5.对于随机游走的偏离程度取决于指数H。
本文从对EMH的产生及其发展讨论出发,从分形的角度探讨市场特性的分形市场分析方法及其所反映的市场特性,推广了资本市场理论,认为市场是分形的,服 从分数布朗运动,即有偏的随机游走,其研究方法可以采用R/S分析法。公众对于信息以非线性的方式作出反应,因而呈现出对信息的不一致性消化、吸收,导致 对随机游走的偏离,并表现为市场的常态。
㈡ 如何在python中实现这五类强大的概率分布
R编程语言已经成为统计分析中的事实标准。但在这篇文章中,我将告诉你在Python中实现统计学概念会是如此容易。我要使用Python实现一些离散和连续的概率分布。虽然我不会讨论这些分布的数学细节,但我会以链接的方式给你一些学习这些统计学概念的好资料。在讨论这些概率分布之前,我想简单说说什么是随机变量(random variable)。随机变量是对一次试验结果的量化。
举个例子,一个表示抛硬币结果的随机变量可以表示成
Python
1
2
X = {1 如果正面朝上,
2 如果反面朝上}
随机变量是一个变量,它取值于一组可能的值(离散或连续的),并服从某种随机性。随机变量的每个可能取值的都与一个概率相关联。随机变量的所有可能取值和与之相关联的概率就被称为概率分布(probability distributrion)。
我鼓励大家仔细研究一下scipy.stats模块。
概率分布有两种类型:离散(discrete)概率分布和连续(continuous)概率分布。
离散概率分布也称为概率质量函数(probability mass function)。离散概率分布的例子有伯努利分布(Bernoulli distribution)、二项分布(binomial distribution)、泊松分布(Poisson distribution)和几何分布(geometric distribution)等。
连续概率分布也称为概率密度函数(probability density function),它们是具有连续取值(例如一条实线上的值)的函数。正态分布(normal distribution)、指数分布(exponential distribution)和β分布(beta distribution)等都属于连续概率分布。
若想了解更多关于离散和连续随机变量的知识,你可以观看可汗学院关于概率分布的视频。
二项分布(Binomial Distribution)
服从二项分布的随机变量X表示在n个独立的是/非试验中成功的次数,其中每次试验的成功概率为p。
E(X) =np, Var(X) =np(1−p)
如果你想知道每个函数的原理,你可以在IPython笔记本中使用help file命令。E(X)表示分布的期望或平均值。
键入stats.binom?了解二项分布函数binom的更多信息。
二项分布的例子:抛掷10次硬币,恰好两次正面朝上的概率是多少?
假设在该试验中正面朝上的概率为0.3,这意味着平均来说,我们可以期待有3次是硬币正面朝上的。我定义掷硬币的所有可能结果为k = np.arange(0,11):你可能观测到0次正面朝上、1次正面朝上,一直到10次正面朝上。我使用stats.binom.pmf计算每次观测的概率质量函数。它返回一个含有11个元素的列表(list),这些元素表示与每个观测相关联的概率值。
结语(Conclusion)
概率分布就像盖房子的蓝图,而随机变量是对试验事件的总结。我建议你去看看哈佛大学数据科学课程的讲座,Joe Blitzstein教授给了一份摘要,包含了你所需要了解的关于统计模型和分布的全部。
㈢ 从数轴原点每次以各50%的概率向左或右移动1,求在回到原点之前到达特定一侧n远之处的概率f(n)
f(n)=1/(2n)
一楼的理解是有问题的,不仅要考虑次数,还要考虑终止。这个问题其实是赌徒自毁问题的特例,属于一维随机游走的经典问题。
如果A和B分别有a元和b元钱,每次下注1元,输赢概率相等(0.5),直到一方输光,那么A胜的概率是a/(a+b)。
这里在f(1)=1/2的基础上,f(n)/f(1)就是A拿1元钱和B拿n-1元钱进行公平赌博当中A的胜率,所以f(n)=f(1)/n。
另外,如果碰到比较复杂的问题编程容易溢出,可以用python的大整数,有理数可以用互质整数对来表示。
㈣ 随机游走算法是什么
这个……设置一个1到4的随机数(假定游走的空间是二维的),如果随机数结果为1,就向上走一个单位,如果为2,向左走一个单位,如果为3,向下走一个单位,如果为4,向右走一个单位,每走一个单位,重复一遍上面的过程。
㈤ Python模拟随机游走图形效果示例
Python模拟随机游走图形效果示例
本文实例讲述了Python模拟随机游走图形效果。分享给大家供大家参考,具体如下:
在python中,可以利用数组操作来模拟随机游走。
下面是一个单一的200步随机游走的例子,从0开始,步长为1和-1,且以相等的概率出现。纯Python方式实现,使用了内建的 random 模块:
# 随机游走importmatplotlib.pyplot as pltimportrandomposition=0walk=[position]steps=200foriinrange(steps): step=1ifrandom.randint(0,1)else-1 position+=step walk.append(position)fig=plt.figure()plt.title("www.jb51.net")ax=fig.add_subplot(111)ax.plot(walk)plt.show()
第二种方式:简单的把随机步长累积起来并且可以可以使用一个数组表达式来计算。因此,我用 np.random 模块去200次硬币翻转,设置它们为1和-1,并计算累计和:
# 随机游走importmatplotlib.pyplot as pltimportnumpy as npnsteps=200draws=np.random.randint(0,2, size=nsteps)steps=np.where(draws >0,1,-1)walk=steps.cumsum()fig=plt.figure()plt.title("www.jb51.net")ax=fig.add_subplot(111)ax.plot(walk)plt.show()
一次模拟多个随机游走
# 随机游走importmatplotlib.pyplot as pltimportnumpy as npnwalks=5nsteps=200draws=np.random.randint(0,2, size=(nwalks, nsteps))# 0 or 1steps=np.where(draws >0,1,-1)walks=steps.cumsum(1)fig=plt.figure()plt.title("www.jb51.net")ax=fig.add_subplot(111)foriinrange(nwalks): ax.plot(walks[i])plt.show()
当然,还可以大胆的试验其它的分布的步长,而不是相等大小的硬币翻转。你只需要使用一个不同的随机数生成函数,如 normal 来产生相同均值和标准偏差的正态分布:steps=np.random.normal(loc=0, scale=0.25, size=(nwalks, nsteps))
㈥ python中模块random是什么意思
random库是使用随机数的Python标准库
从概率论角度来说,随机数是随机产生的数据(比如抛硬币),但时计算机是不可能产生随机值,真正的随机数也是在特定条件下产生的确定值,只不过这些条件我们没有理解,或者超出了我们的理解范围。计算机不能产生真正的随机数,那么伪随机数也就被称为随机数
--伪随机数:计算机中通过采用梅森旋转算法生成的(伪)随机序列元素
python中用于生成伪随机数的函数库是random
因为是标准库,使用时候只需要import random
random库包含两类函数,常用的共8个
--基本随机函数: seed(), random()
--扩展随机函数:randint(), getrandbits(), uniform(), randrange(), choice(), shuffle()
㈦ python如何绘制预测模型校准图
python绘制预测模型校准图可以使用校准曲线,因为预测一个模型校准的最简单的方法是通过一个称为“校准曲线”的图(也称为“可靠性图”,reliability diagram)。
这个方法主要是将观察到的结果通过概率划分为几类(bin)。因此,属于同一类的观测值具有相近的概率。
对于每个类,校准曲线将预测这个类的平均值,然后将预测概率的平均值与理论平均值(即观察到的目标变量的平均值)进行比较。
你只需要确定类的数量和以下两者之间的分类策略即可:
1、“uniform”,一个0-1的间隔被分为n_bins个类,它们都具有相同的宽度。
2、“quantile”,类的边缘被定义,从而使得每个类都具有相同数量的观测值。
假设你的模型具有良好的精度,则校准曲线将单调增加。但这并不意味着模型已被正确校准。实际上,只有在校准曲线非常接近等分线时(即下图中的灰色虚线),您的模型才能得到很好的校准,因为这将意味着预测概率基本上接近理论概率。
python绘制预测模型中如何解决校准错误:
假设你已经训练了一个分类器,该分类器会产生准确但未经校准的概率。概率校准的思想是建立第二个模型(称为校准器),校准器模型能够将你训练的分类器“校准”为实际概率。
因此,校准包括了将一个一维矢量(未校准概率)转换为另一个一维矢量(已校准概率)的功能。
两种常被用作校准器的方法:
1、保序回归:一种非参数算法,这种非参数算法将非递减的自由格式行拟合到数据中。行不会减少这一事实是很重要的,因为它遵从原始排序。
2、逻辑回归:现在有三种选择来预测概率:普通随机森林、随机森林 + 保序回归、随机森林 + 逻辑回归。
㈧ 求大神帮忙,用python写一下在矩阵中随机游走得到一个序列的代码
代码如下:
x = [[-2, -1, 2], [1, 2 ,-1]] # list类型
x = np.mat(x) # 将list类型的x转化为矩阵xprint(relu_fun(x))123
㈨ 直线上的随机游走概率
随机游走是概率论中的一个热点, 其在计算机等领域有着广泛的应用.简单随机游走定义如下[1]:从一给定连通无向图G=(V,E)G=(V,E)中的某一顶点出发的一随机过程, 其每一步独立等概率地选择其相邻的顶点.给定GG上的一简单随机游走以及任意两顶点u,v,u,v,击中时h(u,v)h(u,v)表从uu点出发第一次到达vv点的平均时间.令hmax:=maxu,vh(u,v)hmax:=maxu,vh(u,v).]等研究了击中时、hmaxhmax的诸多性质.