导航:首页 > 编程语言 > python回调装饰

python回调装饰

发布时间:2022-09-18 14:47:22

① 什么是python装饰器


所谓装饰器就是把函数包装一下,为函数添加一些附加功能,装饰器就是一个函数,参数为被包装的函数,返回包装后的函数:你可以试下:

defd(fp):
def_d(*arg,**karg):
print"dosthbeforefp.."
r=fp(*arg,**karg)
print"dosthafterfp.."
returnr
return_d
@d
deff():
print"callf"
#上面使用@d来表示装饰器和下面是一个意思
#f=d(f)
f()#调用f



② python回调函数的使用方法

python回调函数的使用方法
在计算机程序设计中,回调函数,或简称回调(Callback),是指通过函数参数传递到其它代码的,某一块可执行代码的引用。这一设计允许了底层代码调用在高层定义的子程序
有两种类型的回调函数:

那么,在python中如何实现回调函数呢,看代码:
代码如下:

def my_callback(input):
print "function my_callback was called with %s input" % (input,)

def caller(input, func):
func(input)

for i in range(5):
caller(i, my_callback)

③ 如何理解Python装饰器

理解Python中的装饰器
@makebold
@makeitalic
def say():
return "Hello"

打印出如下的输出:
<b><i>Hello<i></b>

你会怎么做?最后给出的答案是:

def makebold(fn):
def wrapped():
return "<b>" + fn() + "</b>"
return wrapped

def makeitalic(fn):
def wrapped():
return "<i>" + fn() + "</i>"
return wrapped

@makebold
@makeitalic
def hello():
return "hello world"

print hello() ## 返回 <b><i>hello world</i></b>

现在我们来看看如何从一些最基础的方式来理解Python的装饰器。英文讨论参考Here。
装饰器是一个很着名的设计模式,经常被用于有切面需求的场景,较为经典的有插入日志、性能测试、事务处理等。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能。
1.1. 需求是怎么来的?
装饰器的定义很是抽象,我们来看一个小例子。

def foo():
print 'in foo()'
foo()

这是一个很无聊的函数没错。但是突然有一个更无聊的人,我们称呼他为B君,说我想看看执行这个函数用了多长时间,好吧,那么我们可以这样做:

import time
def foo():
start = time.clock()
print 'in foo()'
end = time.clock()
print 'used:', end - start

foo()

很好,功能看起来无懈可击。可是蛋疼的B君此刻突然不想看这个函数了,他对另一个叫foo2的函数产生了更浓厚的兴趣。
怎么办呢?如果把以上新增加的代码复制到foo2里,这就犯了大忌了~复制什么的难道不是最讨厌了么!而且,如果B君继续看了其他的函数呢?
1.2. 以不变应万变,是变也
还记得吗,函数在Python中是一等公民,那么我们可以考虑重新定义一个函数timeit,将foo的引用传递给他,然后在timeit中调用foo并进行计时,这样,我们就达到了不改动foo定义的目的,而且,不论B君看了多少个函数,我们都不用去修改函数定义了!

import time

def foo():
print 'in foo()'

def timeit(func):
start = time.clock()
func()
end =time.clock()
print 'used:', end - start

timeit(foo)

看起来逻辑上并没有问题,一切都很美好并且运作正常!……等等,我们似乎修改了调用部分的代码。原本我们是这样调用的:foo(),修改以后变成了:timeit(foo)。这样的话,如果foo在N处都被调用了,你就不得不去修改这N处的代码。或者更极端的,考虑其中某处调用的代码无法修改这个情况,比如:这个函数是你交给别人使用的。
1.3. 最大限度地少改动!
既然如此,我们就来想想办法不修改调用的代码;如果不修改调用代码,也就意味着调用foo()需要产生调用timeit(foo)的效果。我们可以想到将timeit赋值给foo,但是timeit似乎带有一个参数……想办法把参数统一吧!如果timeit(foo)不是直接产生调用效果,而是返回一个与foo参数列表一致的函数的话……就很好办了,将timeit(foo)的返回值赋值给foo,然后,调用foo()的代码完全不用修改!

#-*- coding: UTF-8 -*-
import time

def foo():
print 'in foo()'

# 定义一个计时器,传入一个,并返回另一个附加了计时功能的方法
def timeit(func):

# 定义一个内嵌的包装函数,给传入的函数加上计时功能的包装
def wrapper():
start = time.clock()
func()
end =time.clock()
print 'used:', end - start

# 将包装后的函数返回
return wrapper

foo = timeit(foo)
foo()

这样,一个简易的计时器就做好了!我们只需要在定义foo以后调用foo之前,加上foo = timeit(foo),就可以达到计时的目的,这也就是装饰器的概念,看起来像是foo被timeit装饰了。在在这个例子中,函数进入和退出时需要计时,这被称为一个横切面(Aspect),这种编程方式被称为面向切面的编程(Aspect-Oriented Programming)。与传统编程习惯的从上往下执行方式相比较而言,像是在函数执行的流程中横向地插入了一段逻辑。在特定的业务领域里,能减少大量重复代码。面向切面编程还有相当多的术语,这里就不多做介绍,感兴趣的话可以去找找相关的资料。
这个例子仅用于演示,并没有考虑foo带有参数和有返回值的情况,完善它的重任就交给你了 :)
上面这段代码看起来似乎已经不能再精简了,Python于是提供了一个语法糖来降低字符输入量。

import time

def timeit(func):
def wrapper():
start = time.clock()
func()
end =time.clock()
print 'used:', end - start
return wrapper

@timeit
def foo():
print 'in foo()'

foo()

重点关注第11行的@timeit,在定义上加上这一行与另外写foo = timeit(foo)完全等价,千万不要以为@有另外的魔力。除了字符输入少了一些,还有一个额外的好处:这样看上去更有装饰器的感觉。
-------------------
要理解python的装饰器,我们首先必须明白在Python中函数也是被视为对象。这一点很重要。先看一个例子:

def shout(word="yes") :
return word.capitalize()+" !"

print shout()
# 输出 : 'Yes !'

# 作为一个对象,你可以把函数赋给任何其他对象变量

scream = shout

# 注意我们没有使用圆括号,因为我们不是在调用函数
# 我们把函数shout赋给scream,也就是说你可以通过scream调用shout

print scream()
# 输出 : 'Yes !'

# 还有,你可以删除旧的名字shout,但是你仍然可以通过scream来访问该函数

del shout
try :
print shout()
except NameError, e :
print e
#输出 : "name 'shout' is not defined"

print scream()
# 输出 : 'Yes !'

我们暂且把这个话题放旁边,我们先看看python另外一个很有意思的属性:可以在函数中定义函数:

def talk() :

# 你可以在talk中定义另外一个函数
def whisper(word="yes") :
return word.lower()+"...";

# ... 并且立马使用它

print whisper()

# 你每次调用'talk',定义在talk里面的whisper同样也会被调用
talk()
# 输出 :
# yes...

# 但是"whisper" 不会单独存在:

try :
print whisper()
except NameError, e :
print e
#输出 : "name 'whisper' is not defined"*

函数引用
从以上两个例子我们可以得出,函数既然作为一个对象,因此:
1. 其可以被赋给其他变量
2. 其可以被定义在另外一个函数内
这也就是说,函数可以返回一个函数,看下面的例子:

def getTalk(type="shout") :

# 我们定义另外一个函数
def shout(word="yes") :
return word.capitalize()+" !"

def whisper(word="yes") :
return word.lower()+"...";

# 然后我们返回其中一个
if type == "shout" :
# 我们没有使用(),因为我们不是在调用该函数
# 我们是在返回该函数
return shout
else :
return whisper

# 然后怎么使用呢 ?

# 把该函数赋予某个变量
talk = getTalk()

# 这里你可以看到talk其实是一个函数对象:
print talk
#输出 : <function shout at 0xb7ea817c>

# 该对象由函数返回的其中一个对象:
print talk()

# 或者你可以直接如下调用 :
print getTalk("whisper")()
#输出 : yes...

还有,既然可以返回一个函数,我们可以把它作为参数传递给函数:

def doSomethingBefore(func) :
print "I do something before then I call the function you gave me"
print func()

doSomethingBefore(scream)
#输出 :
#I do something before then I call the function you gave me
#Yes !

这里你已经足够能理解装饰器了,其他它可被视为封装器。也就是说,它能够让你在装饰前后执行代码而无须改变函数本身内容。
手工装饰
那么如何进行手动装饰呢?

# 装饰器是一个函数,而其参数为另外一个函数
def my_shiny_new_decorator(a_function_to_decorate) :

# 在内部定义了另外一个函数:一个封装器。
# 这个函数将原始函数进行封装,所以你可以在它之前或者之后执行一些代码
def the_wrapper_around_the_original_function() :

# 放一些你希望在真正函数执行前的一些代码
print "Before the function runs"

# 执行原始函数
a_function_to_decorate()

# 放一些你希望在原始函数执行后的一些代码
print "After the function runs"

#在此刻,"a_function_to_decrorate"还没有被执行,我们返回了创建的封装函数
#封装器包含了函数以及其前后执行的代码,其已经准备完毕
return the_wrapper_around_the_original_function

# 现在想象下,你创建了一个你永远也不远再次接触的函数
def a_stand_alone_function() :
print "I am a stand alone function, don't you dare modify me"

a_stand_alone_function()
#输出: I am a stand alone function, don't you dare modify me

# 好了,你可以封装它实现行为的扩展。可以简单的把它丢给装饰器
# 装饰器将动态地把它和你要的代码封装起来,并且返回一个新的可用的函数。
a_stand_alone_function_decorated = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function_decorated()
#输出 :
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs

现在你也许要求当每次调用a_stand_alone_function时,实际调用却是a_stand_alone_function_decorated。实现也很简单,可以用my_shiny_new_decorator来给a_stand_alone_function重新赋值。

a_stand_alone_function = my_shiny_new_decorator(a_stand_alone_function)
a_stand_alone_function()
#输出 :
#Before the function runs
#I am a stand alone function, don't you dare modify me
#After the function runs

# And guess what, that's EXACTLY what decorators do !

装饰器揭秘
前面的例子,我们可以使用装饰器的语法:

@my_shiny_new_decorator
def another_stand_alone_function() :
print "Leave me alone"

another_stand_alone_function()
#输出 :
#Before the function runs
#Leave me alone
#After the function runs

当然你也可以累积装饰:

def bread(func) :
def wrapper() :
print "</''''''\>"
func()
print "<\______/>"
return wrapper

def ingredients(func) :
def wrapper() :
print "#tomatoes#"
func()
print "~salad~"
return wrapper

def sandwich(food="--ham--") :
print food

sandwich()
#输出 : --ham--
sandwich = bread(ingredients(sandwich))
sandwich()
#outputs :
#</''''''\>
# #tomatoes#
# --ham--
# ~salad~
#<\______/>

使用python装饰器语法:

@bread
@ingredients
def sandwich(food="--ham--") :
print food

sandwich()
#输出 :
#</''''''\>
# #tomatoes#
# --ham--
# ~salad~
#<\______/>

④ 如何在Python使用装饰器来注册回调函数

之前一直知道装饰器可以增强一个已经存在的方法,Python也提供了annotation的方法,很好用. 但是再看flask login的扩展包的时候. 发现装饰器还可以实现回调函数的注册功能.
flask login就是通过下面的装饰器,来注册回调函数,当没有sessionID时,通过装饰器指定的函数来读取用户到session中.
@login_manager.user_loader
下面写了一个简单的测试例子来演示这个功能.
import time
import functools
class Test():
#/**feature将调用callback(), 但是在Test中并没有真正的定义callback**/
def feature(self):
self.callback()
def decorate(self, func):
self.callback=func
return func
test = Test()
#/**将foo注册为回调函数*//
@test.decorate
def foo():
print 'in foo()'
#/**调用feature将触发回调函数**/
test.feature()

⑤ python装饰器的作用和功能

装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能

⑥ python 装饰器部分 装饰器返回值与函数返回值 混乱了

@deco
def my():
# your code list

python 会解释成:my = deco(my)
所以你实际上外面调用 my()函数时,调用的是deco 里面的wrapfunc(),返回值就是
wrapfunc()的返回值,即"return times"。
一个函数要返回两个值是不现实的,你的需求可能是同时保存函数值和调用花费的时间
(或者简单的打印出来而已?看你的需求了),略该如下(引入全局变量保存……):

funcall_cost = 0
def deco(func):
def wrapfunc(*args, **kwrags):
global funcall_cost
now = time()
result = func(*args, **kwargs)
funcall_cost = time() - now
return result
return wrapfunc

⑦ 如何理解Python装饰器

简单来讲,可以不严谨地把Python的装饰器看做一个包装函数的函数。
比如,有一个函数:
def func():
print 'func() run.'

if '__main__' == __name__:
func()

运行后将输出:
func() run.

现在需要在函数运行前后打印一条日志, 但是又不希望或者没有权限修改函数内部的结构, 就可以用到装饰器(decorator):
def log(function):
def wrapper(*args, **kwargs):
print 'before function [%s()] run.' % function.__name__
rst = function(*args, **kwargs)
print 'after function [%s()] run.' % function.__name__
return rst
return wrapper

@log
def func():
print 'func() run.'

if '__main__' == __name__:
func()

对于原来的函数"func()"并没有做修改,而是给其使用了装饰器log,运行后的输出为:
before function [func()] run.
func() run.
after function [func()] run.

把"@log"放到func()函数定义的地方,相当于执行了如下语句:
func = log(func)

因为log()返回了一个函数, 所以原本的func指向了log()返回的函数wrapper。wrapper的参数列表为(*args, **kwargs), 所以其可以接受所有的参数调用, 在wrapper中,先打印了一行
'before function [%s()] run.' % function.__name__
(在Python中函数也是对象,函数的__name__是它的名字),然后执行了原来的函数并记录了返回值,在输出
'after function [%s()] run.' % function.__name__
后返回了函数的执行结果。
如果decorator本身需要传入参数,那就需要编写一个返回decorator的decorator。比如在Flask中:
@app.route('/')
def index():
return 'hello, world!'

实现如下:
import functools

def log(text=''):
def decorator(function):
@functools.wraps(function)
def wrapper(*args, **kwargs):
print 'before function [%s()] run, text: [%s].' % (function.__name__, text)
rst = function(*args, **kwargs)
print 'after function [%s()] run, text: [%s].' % (function.__name__, text)
return rst
return wrapper
return decorator

@log('log text')
def func():
print 'func() run.'

if '__main__' == __name__:
func()

输出如下:
before function [func()] run, text: [log text].
func() run.
after function [func()] run, text: [log text].

最后脑洞小开一下, 有没有办法实现既支持不带参数(如log), 又支持带参数(如log('text'))的decorator吗?
import functools

def log(argument):
if not callable(argument):
def decorator(function):
@functools.wraps(function)
def wrapper(*args, **kwargs):
print 'before function [%s()] run, text: [%s].' % (function.__name__, text)
rst = function(*args, **kwargs)
print 'after function [%s()] run, text: [%s].' % (function.__name__, text)
return rst
return wrapper
return decorator
def wrapper(*args, **kwargs):
print 'before function [%s()] run.' % function.__name__
rst = argument(*args, **kwargs)
print 'after function [%s()] run.' % function.__name__
return rst
return wrapper

⑧ python中的urlretrieve回调函数怎么用

回调函数,顾名思义,也就是等该函数执行完了,会回去调用我们传进去的函数。用到回调函数的地方有不少,像我见过的:SQLite中的一个函数,sqlite_exec函数名有没有记错我没什么印象了。待这个函数执行完毕后,会去调用我传进去的一个函数,一般回调函数都是有自己的参数列表格式的,再利用这个格式从回调函数中获取到我们需要的一些值。

⑨ 刚学一个星期的小白求教关于python装饰器

fromfunctoolsimportwraps


deflog(func):
@wraps(func)
defwrapper(*args,**kw):
print('begincall:%s()'%func.__name__)
#这里返回的是被装饰的函数的返回值,如果注释了,参见add_3
#returnfunc(*args,**kw)
returnwrapper


@log
defnow():
print('2015-3-25')


@log
defadd_3(int_val):
return3+int_val

now()
print(add_3(4))#这就没有输出了,应该可以解释了

⑩ python装饰器使用

装饰器是从英文decorator翻译过来的,从字面上来看就是对某个东西进行修饰,增强被修饰物的功能,下面我们对装饰器做下简单介绍。

一、怎么编写装饰器

装饰器的实现很简单,本质是一个可调用对象,可以是函数、方法、对象等,它既可以装饰函数也可以装饰类和方法,为了简单说明问题,我们实现一个函数装饰器,如下代码:

有了这个装饰器,我们就可以打印出什么时候开始和结束调用函数,对于排查函数的调用链非常方便。

二、带参数的装饰器

上面的例子无论什么时候调用sum都会输出信息,如果我们需要按需输出信息怎么实现呢,这时就要用到带参数的装饰器了,如下代码:

对sum使用装饰器时没有参数,这时debug为0,所以调用sum时不会输出函数调用相关信息。

对multi使用装饰器时有参数,这时debug为1,所以调用multi时会输出函数调用相关信息。

三、函数名字问题

当我们打印被装饰后的函数名字时,不知道大家有没发现输出的不是函数本身的名字,如下代码会输出‘wrap’而不是‘sum’:

有时这种表现并不是我们想要的,我们希望被装饰后的函数名字还是函数本身,那要怎么实现呢?很简单,只需要引入functools.wraps即可,如下代码就会输出‘sum’了:

看完后是不是觉得python装饰器很简单,只要了解它的本质,怎么写都行,有好多种玩法呢。

阅读全文

与python回调装饰相关的资料

热点内容
压缩因子定义 浏览:966
cd命令进不了c盘怎么办 浏览:212
药业公司招程序员吗 浏览:972
毛选pdf 浏览:657
linuxexecl函数 浏览:725
程序员异地恋结果 浏览:372
剖切的命令 浏览:226
干什么可以赚钱开我的世界服务器 浏览:288
php备案号 浏览:989
php视频水印 浏览:166
怎么追程序员的女生 浏览:487
空调外压缩机电容 浏览:79
怎么将安卓变成win 浏览:459
手机文件管理在哪儿新建文件夹 浏览:724
加密ts视频怎么合并 浏览:775
php如何写app接口 浏览:804
宇宙的琴弦pdf 浏览:396
js项目提成计算器程序员 浏览:944
pdf光子 浏览:834
自拍软件文件夹名称大全 浏览:328