导航:首页 > 编程语言 > python根据数据画图

python根据数据画图

发布时间:2022-09-20 05:08:16

‘壹’ python 数据可视化:分类特征统计图

上一课已经体验到了 Seaborn 相对 Matplotlib 的优势,本课将要介绍的是 Seaborn 对分类数据的统计,也是它的长项。

针对分类数据的统计图,可以使用 sns.catplot 绘制,其完整参数如下:

本课使用演绎的方式来学习,首先理解这个函数的基本使用方法,重点是常用参数的含义。

其他的参数,根据名称也能基本理解。

下面就依据 kind 参数的不同取值,分门别类地介绍各种不同类型的分类统计图。

读入数据集:

然后用这个数据集制图,看看效果:

输出结果:

毫无疑问,这里绘制的是散点图。但是,该散点图的横坐标是分类特征 time 中的三个值,并且用 hue='kind' 又将分类特征插入到图像中,即用不同颜色的的点代表又一个分类特征 kind 的值,最终得到这些类别组合下每个记录中的 pulse 特征值,并以上述图示表示出来。也可以理解为,x='time', hue='kind' 引入了图中的两个特征维度。

语句 ① 中,就没有特别声明参数 kind 的值,此时是使用默认值 'strip'。

与 ① 等效的还有另外一个对应函数 sns.stripplot。

输出结果:

② 与 ① 的效果一样。

不过,在 sns.catplot 中的两个参数 row、col,在类似 sns.stripplot 这样的专有函数中是没有的。因此,下面的图,只有用 sns.catplot 才能简洁直观。

输出结果:

不过,如果换一个叫角度来说,类似 sns.stripplot 这样的专有函数,表达简单,参数与 sns.catplot 相比,有所精简,使用起来更方便。

仔细比较,sns.catplot 和 sns.stripplot 两者还是稍有区别的,虽然在一般情况下两者是通用的。

因此,不要追求某一个是万能的,各有各的用途,存在即合理。

不过,下面的声明请注意: 如果没有非常的必要,比如绘制分区图,在本课中后续都演示如何使用专有名称的函数。

前面已经初步解释了这个函数,为了格式完整,这里再重复一下,即 sns.catplot 中参数 kind='strip'。

如果非要将此函数翻译为汉语,可以称之为“条状散点图”。以分类特征为一坐标轴,在另外一个坐标轴上,根据分类特征,将该分类特征数据所在记录中的连续值沿坐标轴描点。

从语句 ② 的结果图中可以看到,这些点虽然纵轴的数值有相同的,但是没有将它们重叠。因此,我们看到的好像是“一束”散点,实际上,所有点的横坐标都应该是相应特征分类数据,也不要把分类特征的值理解为一个范围,分散开仅仅是为了图示的视觉需要。

输出结果:

④ 相对 ② 的图示,在于此时同一纵轴值的都重合了——本来它们的横轴值都是一样的。实现此效果的参数是 jitter=0,它可以表示点的“振动”,如果默认或者 jitter=True,意味着允许描点在某个范围振动——语句 ② 的效果;还可设置为某个 0 到 1 的浮点,表示许可振动的幅度。请对比下面的操作。

输出结果:

语句 ② 中使用 hue='kind' 参数向图中提供了另外一个分类特征,但是,如果感觉图有点乱,还可以这样做:

输出结果:

dodge=True 的作用就在于将 hue='kind' 所引入的特征数据分开,相对 ② 的效果有很大差异。

并且,在 ⑤ 中还使用了 paletter='Set2' 设置了色彩方案。

sns.stripplot 函数中的其他有关参数,请读者使用帮助文档了解。

此函数即 sns.catplot 的参数 kind='swarm'。

输出结果:

再绘制一张简单的图,一遍研究这种图示的本质。

输出结果:

此图只使用了一个特征的数据,简化表象,才能探究 sns.swarmplot 的本质。它同样是将该特征中的数据,依据其他特征的连续值在图中描点,并且所有点在默认情况下不彼此重叠——这方面与 sns.stripplot 一样。但是,与之不同的是,这些点不是随机分布的,它们经过调整之后,均匀对称分布在分类特征数值所在直线的两侧,这样能很好地表示数据的分布特点。但是,这种方式不适合“大数据”。

sns.swarmplot 的参数似乎也没有什么太特殊的。下面使用几个,熟悉一番基本操作。

在分类维度上还可以再引入一个维度,用不同颜色的点表示另外一种类别,即使用 hue 参数来实现。

输出结果:

这里用 hue = 'smoker' 参数又引入了一个分类特征,在图中用不同颜色来区分。

如果觉得会 smoker 特征的值都混在一起有点乱,还可以使用下面方式把他们分开——老调重弹。

输出结果:

生成此效果的参数就是 dodge=True,它的作用就是当 hue 参数设置了特征之后,将 hue 的特征数据进行分类。

sns.catplot 函数的参数 kind 可以有三个值,都是用于绘制分类的分布图:

下面依次对这三个专有函数进行阐述。

‘贰’ python数据画图

可以用seaborn库画这种带注释的热图,就几行代码,看官方的示例文档就能上手。

‘叁’ python怎么根据数据生成图像

网上有很多的字符画,看起来很炫酷,下面就告诉你如何用Python做这么炫酷的事,

说下思路吧:

原图->灰度->根据像素亮度-映射到指定的字符序列中->输出。
字符越多,字符变化稠密。效果会更好。
如果根据灰度图的像素亮度范围制作字符画,效果会更好。
如果再使用调色板,对字符进行改色,就更像原图了。

这是原图:

这是生成的字符画:

废话不多说,直接上代码:

复制代码 代码如下:

import Image
chars =" ...',;:clodxkLO0DGEKNWMM"
fn=r'c:\users\liabc\desktop\jianbing.png'
f1=lambda
F:''.join([(k%100!=0) and m or m+'\n' for k,m in enumerate(apply(lambda
x:[chars[x[j,i]%len(chars)] for i in xrange(70) for j in
xrange(100)],(Image.open(F).resize((100,70)).convert("L").load(),)),1)])
f=open(r"c:\users\liabc\desktop\aface.txt","w")
f.write(f1(fn))
f.close()

‘肆’ Python实操:手把手教你用Matplotlib把数据画出来

作者:迈克尔·贝耶勒(Michael Beyeler)

如需转载请联系华章 科技

如果已安装Anaconda Python版本,就已经安装好了可以使用的 Matplotlib。否则,可能要访问官网并从中获取安装说明:

http://matplotlib.org

正如使用np作为 NumPy 的缩写,我们将使用一些标准的缩写来表示 Matplotlib 的引入:

在本书中,plt接口会被频繁使用。

让我们创建第一个绘图。

假设想要画出正弦函数sin(x)的线性图。得到函数在x坐标轴上0≤x<10内所有点的值。我们将使用 NumPy 中的 linspace 函数来在x坐标轴上创建一个从0到10的线性空间,以及100个采样点:

可以使用 NumPy 中的sin函数得到所有x点的值,并通过调用plt中的plot函数把结果画出来:

你亲自尝试了吗?发生了什么吗?有没有什么东西出现?

实际情况是,取决于你在哪里运行脚本,可能无法看到任何东西。有下面几种可能性:

1. 从.py脚本中绘图

如果从一个脚本中运行 Matplotlib,需要加上下面的这行调用:

在脚本末尾调用这个函数,你的绘图就会出现!

2. 从 IPython shell 中绘图

这实际上是交互式地执行Matplotlib最方便的方式。为了让绘图出现,需要在启动 IPython 后使用所谓的%matplotlib魔法命令

接下来,无须每次调用plt.show()函数,所有的绘图将会自动出现。

3. 从 Jupyter Notebook 中绘图

如果你是从基于浏览器的 Jupyter Notebook 中看这段代码,需要使用同样的%matplotlib魔法命令。然而,也可以直接在notebook中嵌入图形,这会有两种输出选项:

在本书中,将会使用inline选项:

现在再次尝试一下:

上面的命令会得到下面的绘图输出结果:

如果想要把绘图保存下来留作以后使用,可以直接在 IPython 或者 Jupyter Notebook 使用下面的命令保存:

仅需要确保你使用了支持的文件后缀,比如.jpg、.png、.tif、.svg、.eps或者.pdf

作为本章最后一个测试,让我们对外部数据集进行可视化,比如scikit-learn中的数字数据集。

为此,需要三个可视化工具:

那么开始引入这些包吧:

第一步是载入实际数据:

如果没记错的话,digits应该有两个不同的数据域:data域包含了真正的图像数据,target域包含了图像的标签。相对于相信我们的记忆,我们还是应该对digits稍加 探索 。输入它的名字,添加一个点号,然后按Tab键:digits.<TAB>,这个操作将向我们展示digits也包含了一些其他的域,比如一个名为images的域。images和data这两个域,似乎简单从形状上就可以区分。

两种情况中,第一维对应的都是数据集中的图像数量。然而,data中所有像素都在一个大的向量中排列,而images保留了各个图像8×8的空间排列。

因此,如果想要绘制出一副单独的图像,使用images将更加合适。首先,使用NumPy的数组切片从数据集中获取一幅图像:

这里是从1797个元素的数组中获取了它的第一行数据,这行数据对应的是8×8=64个像素。下面就可以使用plt中的imshow函数来绘制这幅图像:

上面的命令得到下面的输出:

此外,这里也使用cmap参数指定了一个颜色映射。默认情况下,Matplotlib 使用MATLAB默认的颜色映射jet。然而,在灰度图像的情况下,gray颜色映射更有效。

最后,可以使用plt的subplot函数绘制全部数字的样例。subplot函数与MATLAB中的函数一样,需要指定行数、列数以及当前的子绘图索引(从1开始计算)。我们将使用for 循环在数据集中迭代出前十张图像,每张图像都分配到一个单独的子绘图中。

这会得到下面的输出结果:

关于作者:Michael Beyeler,华盛顿大学神经工程和数据科学专业的博士后,主攻仿生视觉计算模型,用以为盲人植入人工视网膜(仿生眼睛),改善盲人的视觉体验。 他的工作属于神经科学、计算机工程、计算机视觉和机器学习的交叉领域。同时他也是多个开源项目的积极贡献者。

本文摘编自《机器学习:使用OpenCV和Python进行智能图像处理》,经出版方授权发布。

‘伍’ python怎么用列表中的数据画图

可以在matplotlib的文档中找到各种图表类型,由于根据特定布局创建Figure和subplot是一件常见的任务,于是便出现一个更为方便的方法:
plt.subplots,它可以创建一个新的Figure,且返回一个含有已创建的subplot对象的numpy数组。

‘陆’ 如何用python绘制简单条形图

如何用python绘制简单条形图呢?这里离不开matplotlib的使用。
条形图是数据可视化图形中很基础也很常用的一种图,简单解释下:条形图也叫长条图(英语:bar chart),亦称条图(英语:bar graph)、条状图、棒形图、柱状图、条形图表,是一种以长方形的长度为变量的统计图表。长条图用来比较两个或以上的价值(不同时间或者不同条件),只有一个变量,通常利用于较小的数据集分析。长条图亦可横向排列,或用多维方式表达。
那么一个普通的条形图是长什么样子的呢?
当!当!当!就是下图的这个样子:
图先亮出来啦,接下来研究这个图是怎么画的吧,先看一下原数据长什么样子:
实际画图的流程和画折线图很相近,只是用到的画图函数不一样,绘制条形图的函数plt.bar():
由于这只是最简单的一个条形图,实际上条形图的函数plt.bar()还有不少可以探索的参数设置,和对折线图函数plt.plot()的探索差不多,有兴趣的孩子可以自己去进行探索哦。
按照条形长短进行排序展示的条形图
当然也可以有其他的设置,比如说上图中的线条高低参差不齐,这是因为x轴的数据是按照学校名称进行排序的,那么可不可以按照分数的高低进行排序呢?也就是让所有的长方形按照从高到矮或者从矮到高的顺序进行排列?
当然可以啦!这里需要强调的是,条的高低排列等信息都是来源于原数据的,要想让条形的顺序发生改变,需要对画图的来源数据进行更改呢!
把原数据逆序排序后截取前十名数据赋值给data_yuwen,作为新的数据源传入画图函数plt.bar(),画出来的图自然就不一样了。
先看一眼数据长什么样子:
根据这个数据源绘制出的图形如下,由于用来画图的数据进行了降序排序操作,所以生成条形图的条也会进行降序排序展示:
很多时候,我们常见的条形图还有另一种展现形式,那就是横向的条形图,比较火的那种动态条形图绝大多数也都是横向的条形图,那么横向的条形图如何绘制呢?
理解plt.bar()主要参数
其实也不难,只要清楚plt.bar()函数中主要参数的作用就可以了!条形图函数中有五个主要参数,分别是x,height,width,bottom,orientation。其中x控制的是每个条在x轴上位置,height控制的是每个条的长度,width控制的是每个条的宽度,bottom控制的是每个条在y轴方向的起始位置,orientation控制的是条形的方向,是纵向还是横向,默认是纵向的。
通过一个小例子理解下这几个参数的作用:
上边的几行代码输出的图形如下:
对比着代码和实际输出的条形图,各个主要参数的作用是不是一目了然啦?
横向条形图
理解了这几个参数作用后,纵向的条形图转换成横向的条形图就没什么难度了!
需要设置所有条形在x轴的位置都为0,也就全部从最左侧开始画条形;由于是横向条形图,所以实际上条的宽度显示的是数据大小,将width参数设置成原数据中的语文成绩;bottom控制每个条在y轴方向的起始位置,设置bottom=range(10)设置每个条形在y轴的起始位置各不相同避免有条形重叠;height控制的是每个条在y轴方向上的长度,条形图横向设置后,在y轴上的长度失去了衡量数据的意义,所以直接设置一个常数即可;最后设置条形的方向为横向,即orientation=“horizontal”。
温馨提示:数据和标签一定要匹配,即plt.bar()重点的数据要和plt.yticks()中提取出来的标签一一对应,一旦不匹配,整个图展现的结果就是一个错误的结果!
上述代码生成的条形图如下:
感觉上边这种生成横向条形图的方式有点点绕,和人们的习惯认知有点不大一样,难道画一个横向条形图就非得转变自己的习惯认知这么反人类吗?
当然不是的,实际上有更简单的方法绘制一个横向条形图,之所以没有一开始就直接用这种简单的方法,也是为了让大家体会下条形图参数的灵活设置而已,而且如果比较绕的方法都能理解了,简单的方法理解和运用起来就更没有难度了啊!
不卖关子了,我们来认识下和plt.bar()函数类似的plt.barh()函数。
plt.barh()函数是专门绘制水平条形图的函数,主要的参数有:
y 控制y轴显示的标签来源width 控制横向条形的长度,即用来进行对比的数据源height 条形的宽度需要设置的参数主要就是这三个,比用plt.bar()函数绘制水平条形图简单了很多,具体代码如下:
效果图:
和用plt.bar()函数绘制的横向条形图一毛一样对不对?以后有需求绘制横向条形图,尽量用plt.barh()函数吧,毕竟它是专门绘制这种类型图的,简单好用。
然而实际工作中对于条形图的需求不只是这些,比如例子中只是对各个学校语文成绩的展示,有时候需要各个学科的成绩同时展现在一幅条形图中,有时候也需要绘制堆积条形图对各学科的成绩以及总成绩进行展示,这些图又该如何绘制呢?其实只要理解了各个参数的含义,绘制这些图也不在话下,至于具体怎么画,且看下回分解啊!

‘柒’ python matplotlib数据作图

1、使用numpy生成一个长度为100的等差数列作为自变量,命名为x,分别使用三角函数sinx和cosx**2生成2个因变量,命名为y和z。

‘捌’ python 绘制三维图形、三维数据散点图

1. 绘制3D曲面图

from matplotlib import pyplot as plt

import numpy as np

from mpl_toolkits.mplot3d import Axes3D

fig=plt.figure()

ax=Axes3D(fig)

x=np.arange(-4,4,0.25)

y=np.arange(-4,4,0.25)

x,y=np.meshgrid(x,y)

r=np.sqrt(x**2, y**2)

z=np.sin(r)

//绘面函数

ax.plot_surface(x,y,z,rstride=1,cstride=1,cmap=“rainbow”

plt.show()

2.绘制三维的散点图(表述一些数据点分布)

4a.mat数据地址:http blog.csdn.net/eddy_zhang/article/details/50496164

from matplotlib import pyplot as plt

import scipy.io as sio

from mpl_toolkits.mplot3d import Axes3D

matl=‘4a.mat’

data=sio.loadmat(matl)

m=data[‘data’]

x,y,z=m[0],m[1],m[2]

//创建一个绘图工程

ax=plt.subplot(111,project=‘3D’)

//将数据点分成三部分画,在颜色上有区分度

ax.scatter(x[:1000], y[:1000], z[:1000],c=‘y’ )//绘制数据点

ax.scatter(x[1000:4000], y[1000:4000], z[1000:4000],c=‘r’ )//绘制数据点

ax.scatter(x[4000:], y[4000:], z[4000:],c=‘g’ )//绘制数据点

ax.set_zlable(‘z’)//坐标轴

ax.set_ylable(‘y’)//坐标轴

ax.set_xlable(‘x’)

plt.show()

‘玖’ 用python对txt数据进行绘图

‘拾’ 如何利用python对大量数据作图

可以在matplotlib的文档中找到各种图表类型,由于根据特定布局创建Figure和subplot是一件常见的任务,于是便出现一个更为方便的方法: plt.subplots,它可以创建一个新的Figure,且返回一个含有已创建的subplot对象的numpy数组。

阅读全文

与python根据数据画图相关的资料

热点内容
php备案号 浏览:984
php视频水印 浏览:163
怎么追程序员的女生 浏览:485
空调外压缩机电容 浏览:77
怎么将安卓变成win 浏览:457
手机文件管理在哪儿新建文件夹 浏览:722
加密ts视频怎么合并 浏览:774
php如何写app接口 浏览:802
宇宙的琴弦pdf 浏览:395
js项目提成计算器程序员 浏览:944
pdf光子 浏览:834
自拍软件文件夹名称大全 浏览:328
程序员留学移民 浏览:52
梁中间部位箍筋加密区 浏览:119
频谱分析pdf 浏览:752
乐2怎么升级安卓70 浏览:174
java中获取日期 浏览:508
单片机74hc245 浏览:274
美国历史上的总统pdf 浏览:753
程序员脱单实验室靠不靠谱 浏览:460