基于python的web开发,这里我们使用linux为开发环境,搭建基于nginx + web.py + fastcgi
有些基本基本概念解释下,哈哈,因为我不懂
1.wsgi为Web服务器网关接口(Python Web Server Gateway Interface,缩写为WSGI)是是为Python语言定义的Web服务器和Web应用程序或框架之间的一种简单而通用的接口。自从WSGI被开发出来以后,许多其它语言中也出现了类似接口
2.uwsgi,另一种python定义的web服务器和web应用的接口
3.REST服务,REST(Representational State Transfer表述性状态转移)是一种针对网络应用的设计和开发方式,可以降低开发的复杂性,提高系统的可伸缩性。
4.CRUD是指在做计算处理时的增加(Create)、查询(Retrieve)(重新得到数据)、更新(Update)和删除(Delete)几个单词的首字母简写。主要被用在描述软件系统中数据库或者持久层的基本操作功能
以下内容主要来自
http://webpy.org/cookbook/fastcgi-nginx
需要的软件
nginx 0.7以上版本,我使用的是nginx 0.9.2
webpy我使用的web.py-0.37
spawn-fcgi 1.6.3
flup 1.0
nginx的配置请参看官方文档
spawn-fcgi是lighttpd的一个子项目用于多进程管理
webpy和flup安装方式为解压后运行python setup.py install
安装编写index.py
点击(此处)折叠或打开
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import web
urls = ("/.*", "hello")
app = web.application(urls, globals())
class hello:
def GET(self):
return 'Hello, world!'
if __name__ == "__main__":
web.wsgi.runwsgi = lambda func, addr=None: web.wsgi.runfcgi(func, addr)
app.run()
注意index.py需要使用命令chmod +x index.py加入可执行权限
将index.py放入/data/www(我所使用的目录你可以修改)
修改nginx.conf配置
index要加入index.py
Nginx的配置加入
点击(此处)折叠或打开
location / {
fastcgi_param REQUEST_METHOD $request_method;
fastcgi_param QUERY_STRING $query_string;
fastcgi_param CONTENT_TYPE $content_type;
fastcgi_param CONTENT_LENGTH $content_length;
fastcgi_param GATEWAY_INTERFACE CGI/1.1;
fastcgi_param SERVER_SOFTWARE nginx/$nginx_version;
fastcgi_param REMOTE_ADDR $remote_addr;
fastcgi_param REMOTE_PORT $remote_port;
fastcgi_param SERVER_ADDR $server_addr;
fastcgi_param SERVER_PORT $server_port;
fastcgi_param SERVER_NAME $server_name;
fastcgi_param SERVER_PROTOCOL $server_protocol;
fastcgi_param SCRIPT_FILENAME $fastcgi_script_name;
fastcgi_param PATH_INFO $fastcgi_script_name;
fastcgi_pass 127.0.0.1:9002;
}
使用Spawn-fcgi
spawn-fcgi -d /data/www -f /data/www/index.py -a 127.0.0.1 -p 9002
如果报错为126,说明index.py没有可执行权限
netstat -lnp | grep 9002参考是否启动成功
我运行的实际为
spawn-fcgi -d /data/www -f /data/www/index.py -a 127.0.0.1 -p 9002 -F 2
启动2个进程
启动nginx
浏览器输入地址
成功结束
❷ Python可以用来干什么
1、做日常任务,比如下载视频、MP3、自动化操作excel、自动发邮件。
2、做网站开发、web应用开发,很多着名的网站像知乎、YouTube就是Python写的。
许多大型网站就是用Python开发的,例如YouTube、Instagram,还有国内的豆瓣。很多大公司,包括Google、Yahoo等,甚至NASA(美国航空航天局)都大量地使用Python。
3、做网络游戏的后台,很多在线游戏的后台都是Python开发的。
4、系统网络运维
Linux运维是必须而且一定要掌握Python语言,它可以满足Linux运维工程师的工作需求提升效率,总而提升自己的能力,运维工程师需要自己独立开发一个完整的自动化系统时,这个时候才是真正价值的体现,才能证明自身的能力,让老板重视。
5、3D游戏开发
Python也可以用来做游戏开发,因为它有很好的3D渲染库和游戏开发框架,目前来说就有很多使用Python开发的游戏,如迪斯尼卡通城、黑暗之刃。
6、科学与数字计算
我们都知道现在来临了大数据的时代,数据可以说明一切问题的原因,现在很多做数据分析的不是原来那么简单,Python语言成为了做数据分析师的第一首选,它同时可以给工作带来很大的效率。
7、人工智能
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。Python语言对于人工智能来说是最好的语言。目前好多人都开始学习人工智能+Python学科。
8、网络爬虫
爬虫是属于运营的比较多的一个场景吧,比如谷歌的爬虫早期就是用跑Python写的. 其中有一个库叫 Requests ,这个库是一个模拟HTTP请求的一个库,非常的出名! 学过Python的人没有不知道这个库吧,爬取后的数据分析与计算是Python最为擅长的领域,非常容易整合。不过目前Python比较流行的网络爬虫框架是功能非常强大的scrapy。
9、数据分析
一般我们用爬虫爬到了大量的数据之后,我们需要处理数据用来分析,不然爬虫白爬了,我们最终的目的就是分析数据,在这方面 关于数据分析的库也是非常的丰富的,各种图形分析图等 都可以做出来。也是非常的方便,其中诸如Seaborn这样的可视化库,能够仅仅使用一两行就对数据进行绘图,而利用Pandas和numpy、scipy则可以简单地对大量数据进行筛选、回归等计算。
而后续复杂计算中,对接机器学习相关算法,或者提供Web访问接口,或是实现远程调用接口,都非常简单。
❸ python怎么做web开发
用Python做Web开发,Django框架是个非常好的起点。
Django是一个开放源代码的Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,视图V和模版T。它最初是被开发来用
于管理劳伦斯出版集团旗下的一些以新闻内容为主的网站的,即是CMS(内容管理系统)软件。并于2005年7月在BSD许可证下发布。
Django已经成为web开发者的首选框架,是一个遵循 MVC 设计模式的框架。MVC是Model、View、Controller三个单词的简写,分别
代表模型、视图、控制器。Django其实也是一个MTV 的设计模式。MTV是Model、Template、View三个单词的简写,分别代表模型、
模版、视图 。但是在Django中,控制器接受用户输入的部分由框架自行处理,所以 Django 里更关注的是模型(Model)、模板
(Template)和视图(Views),称为 MTV模式。
Django 视图不处理用户输入,而仅仅决定要展现哪些数据给用户,而Django 模板 仅仅决定如何展现Django视图指定的数据。或者说,
Django将MVC中的视图进一步分解为 Django视图 和 Django模板两个部分,分别决定 “展现哪些数据” 和 “如何展现”,使得
Django的模板可以根据需要随时替换,而不仅仅限制于内置的模板。
至于MVC控制器部分,由Django框架的URLconf来实现。URLconf机制是使用正则表达式匹配URL,然后调用合适的Python函数。
URLconf对于URL的规则没有任何限制,你完全可以设计成任意的URL风格,不管是传统的,RESTful的,或者是另类的。框架把控制层
给封装了,无非与数据交互这层都是数据库表的读,写,删除,更新的操作。在写程序的时候,只要调用相应的方法就行了,感觉很方便。程
序员把控制层东西交给Django自动完成了。 只需要编写非常少的代码完成很多的事情。所以,它比MVC框架考虑的问题要深一步,因为
我们程序员大都在写控制层的程序。这个工作交给了框架,仅需写很少的调用代码,大大提高了工作效率。
更多技术请关注Python视频教程。
❹ 怎么用Python + Flask框架实现Web应用实现日志记录功能
Flask自带logger功能:app.logger.debug(....),logger是是标准日志类 Logger。在route中写相应的日志即可。
通过配置,将相应的日志文件定位到服务可访问的位置,然后,定义一个新的路由,显示这个日志:读取它,配合模板引擎显示它。
❺ Python三大web框架分别是什么 哪个更好
【导读】目前,Python比较火的三大web框架有Django、Flask和Tornado,要论这三个Web框架哪个更好的话,建议一点,Django帮我们事先搭建了好多,上手会快一些,学习的话可以先从Django学起,然后再学习Flask和Tornado,下面我们就来具体了解一下Python三大web框架的详情。
1、Django
Django是一个开放源代码的Web应用框架,由Python写成。采用了MTV的框架模式,即模型M,模板T和视图V。它最初是被开发来用于管理劳伦斯出版集团旗下的一些以新闻内容为主的网站的,即是CMS(内容管理系统)软件。
2、Flask
Flask是一个使用Python编写的轻量级Web应用框架。其 WSGI工具箱采用Werkzeug ,模板引擎则使用 Jinja2
。Flask使用BSD授权。
Flask也被称为 “microframework” ,因为它使用简单的核心,用 extension
增加其他功能。Flask没有默认使用的数据库、窗体验证工具。
Flask 很轻,花很少的成本就能够开发一个简单的网站。非常适合初学者学习。Flask 框架学会以后,可以考虑学习插件的使用。例如使用 WTForm +
Flask-WTForm 来验证表单数据,用 SQLAlchemy + Flask-SQLAlchemy 来对你的数据库进行控制。
3、Tornado
Tornado是一种 Web 服务器软件的开源版本。Tornado 和现在的主流 Web 服务器框架(包括大多数 Python
的框架)有着明显的区别:它是非阻塞式服务器,而且速度相当快。
得利于其 非阻塞的方式和对epoll的运用,Tornado 每秒可以处理数以千计的连接,因此 Tornado 是实时 Web 服务的一个
理想框架。
关于Python三大web框架的简单介绍,就给大家分享到这里了,当然学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚,希望大家抓紧时间进行学习吧。
❻ Python 如何开发高效漂亮的轻量级 Web 应用
痛点
从我开始折腾数据分析工具的那一天,就没有想明白一件事儿 —— 我打算把数据分析的成果做成一个 Web 应用,为什么这么难?
我需要的核心功能,无非是在网页上接收用户输入,然后做分析处理,把分析结果反馈给用户,完事儿。
可是这谈何容易?
很多人都会微笑着告诉你,想做 Web 应用?这得学前端编程, HTML + javascript 了解一下吧!
什么?你还需要在后台做数据分析?那你就得学 Web 框架了。
你说喜欢 Python ?那就学个 Django 或者 Flask 好了。
我也不是没有看过 Django 和 Flask 的教程,还曾经付费学习过。光是 Django 配置环境,就够写一章出来。
作为学习的中间成果,我还写了这篇《如何用 Python 做 Web 开发?——Django 环境配置》分享给你。
真正让我痛苦的,不是 Web 框架的操作有多么琐碎,而是教程里的案例,为什么都那么奇怪?
几乎所有的教程,都指向一个目标:
来,我教你做一个 blog 出来!
我用你教?!
我要是想用 blog ,可以直接注册一个免费的啊!为什么我要自己开发个 blog 出来?
为什么你就不能告诉我,该怎么把我目前的数据分析结果,迅速挪到 Web 页面上,跟用户实时交互?
虽然二者的结果,都是做一个 Web 应用出来。但是,它们关注的焦点,需要的功能,能一样吗?
但是人家写书和做教程的人,就是不疾不徐,坚持一定要教会你,如何做一个 blog 出来……
你不学,又能怎么办呢?你难道想只凭 Python 脚本,就做一个 Web 应用出来?
还真别说,最近,这个事儿从幻想,变成了现实。
样例
这不,我就用纯 Python 脚本写了个 Web 应用。
我编写的代码里,没有一丝半毫的 Web 框架,Javascript,甚至是 HTML 。
这玩意儿能用吗?
你自己来试试看。
请你打开浏览器,输入以下链接:https://helloworld-streamlit.herokuapp.com/
你会看到下面的初始化界面。
初始化完毕之后,页面会分成左右两栏。左面是两个下拉候选框,分别让你指定需要分析的数据范围。
上面一个,是事件类型;
下面一个,是事件发生归属地。
如果你看过我的文章《如何用 Python 和循环神经网络预测严重交通拥堵?》,应该对这个数据集很熟悉。
只不过,当时我们更注重的,是用循环神经网络搭建了一个严重拥堵事件预测模型。
而今天,我们是要进行探索性数据分析,也就是根据我们感兴趣的目标,对数据进行整理操作,然后可视化显示。
选定之后,你会看到右侧提示两个信息:
你筛选之后,数据框包含行数
在层叠地图上的可视化结果。
怎么样?
麻雀虽小,五脏俱全。
虽然咱们这个 Web 应用很简单,不过交互分析该有的功能和流程,基本上都涵盖了。
你可能会问:
王老师,编这么一个应用出来,不简单吧?
让我带你到幕后,看看是不是很复杂。
幕后
我把这个应用的全部源代码,都为你存储到了 Github 上。请你访问这个网址获取:https://github.com/wshuyi/demo-helloworld-streamlit
可以看到,一共包含了 4 个文件。
有意思的是,其中 3 个,包括:
Procfile
setup.sh
requirements.txt
都只是部署到远程服务器时,需要用到的配置文件而已。
也就是说,只有最后一个helloworld.py是主角,它包含了实现咱们全部交互式数据分析功能的 Python 脚本文件。
这代码,少说也得有几百行吧?
别担心,打开来看看:
上面这张截图,就已经包含了实现交互数据分析功能的全部代码。
神奇吧?
解读
这么短的代码,为什么能有如此强大的功能?
这是因为它背后使用的一个软件包,叫做streamlit。
它是干什么用的?
一言以蔽之,给你赋能,让你能够不去操心什么前端后端。只写 Python ,只关注功能,你就能写出一个交互式 Web 应用出来。
当然,既然最后是 Web 应用,那么实际上前后端的功能都是齐备的。
只不过,这些交由 Streamlit 来帮你费心操办。你根本不用管。
爆发
为什么会有人做了这么一款神器出来?
原因很简单,咱们前面提到的痛点,是大伙儿都有的。
咱们这些麻瓜(Muggle),遇到痛点只能忍着。
但是真正的魔法师(优秀程序员),是忍不了的。
在这段来自 PyData LA 2019 的视频里,Streamlit 的 CEO Adrien Treuille 谈及了他在数据智能企业中,长期遭遇的痛点。
最大的痛点,就是数据科学家训练好机器学习模型后,需要验证效果,和用户反馈沟通。
但是,做机器学习的工程师本身,并不掌握这一整套的工具栈。
所以,就得在把全部的数据分析和模型训练工作完成后,把这东西移交给一个工具制作团队。
人家做完以后,就告诉数据科学团队说,做好了。但是注意,现在处于需求冻结阶段。这个应用你们可以随便用,只是别乱改。改坏了我们管不了。因为最近两个月,我们还得给其他若干数据分析团队做 app 。大概几个月以后,我们又能回来帮助你们了……
Adrien Treuille 很敏锐地捕捉到了这个长期痛点,于是在 2018 年, 创立了 streamlit 。
目标很简单,给数据科学团队提供简单的工具,让他们使用已经掌握的 Python 编程技能,就能直接做 Web 应用。
什么 “等上两三个月不许改”?!你们自己慢慢儿玩儿去吧,我们想怎么改,就怎么改!
至于做出来的东西嘛,可以是这样的:
资源
看到这里,是不是心动了?也打算学习一下 Streamlit ?
没问题,我前面给你提供的样例,就在 github 上,你可以直接查看源码。
如果你希望重现这个小应用,并且一步步学习掌握 Streamlit 的基础知识和技能,我也已经为你写好了一份手把手的教程。地址在这里https://sspai.com/post/58474。
它不仅教你如何设置环境,安装工具,写作代码,甚至连如何免费部署到 heroku 平台,让用户使用,都毫无保留地教给了你。
那篇文章,我用于参加少数派年度征文活动,所以就不能全文展示在这里了。
读完以后,如果你觉得有收获,欢迎在少数派平台上帮我点个赞。谢谢支持!
思考
尝试过之后,你应该不难发现,Streamlit 给你带来了什么。
如果你学过 Javascript 和 Flask, Django 等 Web 应用开发技术,Streamlit 可以加快你的 Web 应用开发与测试进程。
如果你还没有学过上述技术, Streamlit 可以给你赋能,让你一下子有了把数据分析结果变成产品的能力。
给你讲点儿更激进的。
有人已经希望能用它替代掉 Flask 用于产品发布了。
还有人说,将来写技术文档,也应该充分使用 Streamlit 。
甚至,还把它比作了数据科学界的 iPhone 。
这里,它是借喻 iPhone 开启智能手机时代,说明 Streamlit 的划时代性。
我不希望你也变得如此激进。
因为这里提到的每一种功用,现在还都有非常专业的工具做的更好,而且新的工具也在不断涌现。
例如说,我们在多个教程中一直使用 Jupyter Notebook 。
现在凭借 Voila 扩展的加持,你也可以很轻松地把 Jupyter Notebook 变成 Web app ,而且可以免费运行在 mybinder 上面。
但是,你可以看到,一个新的工具,以一种简单,而不是更繁复的办法,解决一个功能痛点,是一件多么令人欣喜的事儿。
看了这篇文章,可能会给你一种误解,似乎 JavaScript 为代表的前端编程技术,再也不需要学了。
其实不是这样的。
可以想象,开发门槛降低以后,将来会有更多的人使用 Python 来做 Web 应用。
用 Streamlit 这样的方法,他们只是开发出了一个原型。
要是想打造精品,就必须精细调控很多细节。
这时候, 如果你精通 Javascript ,那你潜在的合作对象一下子就多了起来,你掌握的这门技术,也就有了更大的价值。
还记得吗?我不止一次给你强调过,比起一个工具自身的能力来,协作网络更重要。忘了的话,记得复习《学 Python ,能提升你的竞争力吗?》。
这就好像印刷术的发明,不是让会写字这件事儿变得失去价值,而是全社会都增大了对好作品的渴求。深刻的思考,加上有效的文字表达,会让你生存得更好。
当然,如果你不希望精通写作技艺,只是想做一个抄书匠糊口。那么印刷术就可能会替代你的工作,结果就不那么美妙了。
小结
这篇文章,我为你介绍了 Streamlit 这款有趣的工具。希望你读过之后,掌握了以下知识点:
借助 Streamlit ,你可以用纯 Python 编制 Web 应用;
学 Web 设计依然很有前途,因为你的潜在合作群体正在迅速扩大;
不要惹魔法师(优秀程序员)。他们的痛点需求会转化成无尽的战斗力,兴许会直接替掉你的日常工作。
更多Python知识,请关注:Python自学网!!
❼ 如何用python开发移动App后台需要掌握哪些技术
给一套我用过的解决方案,用来开发过web项目(网页 + ios)和手游项目(ios + 安卓),都是一套后台对应多种前端平台:
web框架:Django
Django 是一套相对全(zhong)面(yong)的框架,基本你要的功能都有,文档很细致,上手比较容易,开发效率比较高。自带 auth、session、orm、admin 等功能,尤其是 admin,如果要求不是太高,用自带的后台管理系统就能省下很多开发工作。
web server:nginx
相对 apache 较轻,简洁。用来部署 django 也比较方便,可参考 Setting up Django and your web server with uWSGI and nginx
数据库:mysql
这个不限定,看业务需求和开发者喜好。当然如果用了 django,自然最好选一个 orm 支持比较好的。
RESTful API:Tastypie
基于 Django 的 RESTful API。Django 本身作为一个 web 框架,返回的结果默认是渲染好的 html 文本。借助 Tastypie,可以比较方便的制作 json 数据格式的接口,将前后端解耦合。这样不管是网页、iOS 还是 Android,都可以用同样的接口。
再针对问题补充一下:
1、如果使用python语言,需要学习哪些知识?
python 语言本身,使用的框架,web 开发的通用知识,比如 HTTP 请求的处理流程、RESTful、OAuth 等。
2、选择什么样的python框架开发,这个框架的优势?
见上文。
3、如何部署服务器?本地服务器调试,以及公网服务器部署?
Django 自带本地调试服务,开发的时候用局域网地址调试即可。公网部署见上文。
4、如果使用python框架开发移动后台服务,在开发源码内使用哪种框架?mvc还是其它的,比如我返回json数据,每次json对象最外层有一些相同的东西,该如何处理?
Tastypie 可以处理掉生成 json 数据时的很多体力活。
5、python的后台服务最大能支持多大的pv量会严重影响用户体验性能?
这个没法给确切答案,具体情况会受机器硬件条件(CPU、内存、I/O)、网络带宽、代码质量、架构设计,甚至配置参数的影响。目前有较大型网站使用 python,并正常运作(参见 有哪些大型公司在使用 Python?有哪些知名项目是主要由 Python 写成的? - Crossin 的回答),所以 python 本身不是问题。实践时,做好压力测试和上线后的性能监控,找出瓶颈不断优化是王道。
6、如何兼顾 网页前端以及移动端 开发的后台?
通过 API,后台无需知道是什么平台在使用它。
7、有没用相关的案例,即用python开发的移动后台?有没有该问题的开源项目?
通常框架会自带测试案例。真实案例开源的暂时不知道。如果哪天我把之前写的开源了,再回来修改答案。
❽ python做web开发好吗
Python适合从简单到复杂的各种Web项目。它广泛用于旅行,医疗保健,交通运输,金融等不同领域,用于Web开发和软件测试,脚本编写和生成。
选择Python进行Web开发的优点:
1、易于使用和阅读
有几个因素可以简化Python在Web开发中的使用:
低入门门槛 Python与我们日常生活中使用的英语相似。语法的简单性使您可以处理复杂的系统,并确保所有元素之间都具有明确的关系。因此,更多的新手程序员可以学习该语言并更快地加入编程社区。
良好的可视化 效果通过使用不同的图和图表,可以以易于理解的格式表示数据。它们是可视化呈现和理解数据的有效方法。Web开发公司利用Python库(例如Matplotlib)来可视化数据并创建清晰且易于理解的报告。
Python非常易于阅读,因此开发人员通常在理解由其他程序员编写的代码时不会遇到任何问题。这可以促使从事同一项目的开发人员之间的通信效率更高。
2、异步编码
由于没有死锁或研究争执或任何其他令人困惑的问题,因此使用Python 编写和维护异步代码无需花费太多精力。此类代码的每个单元分别运行,从而使您能够更快地处理各种情况和问题。
3、较少限制的编程方法
与其他编码语言(例如Java)相比,Python具有较少限制的编程方法。它具有多种范例,可以支持多种编程风格,包括过程性,面向对象和功能性(命令性)。这使Python成为初创公司的绝佳语言,因为项目可能需要随时更改方法。
4、企业应用集成
Python是企业软件应用程序的流行选择,这在很大程度上要归功于Python与传统上用于企业开发的其他语言(例如Java,PHP和.NET)的流畅集成。
Python直接与Java,C ++或C代码进行调用,从而可以对大多数常用协议和数据格式进行大量的过程控制和实现。
除此之外,它还可以用于组装基础结构的新旧片段,这是复杂移动应用程序中的典型情况。
5、可以使用Python框架快速进行Web开发
Python的另一个优点是它具有许多简化开发过程的框架。根据您的工作,可能需要不同的框架。
6、科学计算库方便
有各种各样的软件包和库可用于开发科学和数字应用程序,以及工具包(例如VTK 3D和MayaVi),单独的成像库以及许多其他工具。
7、用于机器学习和AI
机器学习(ML)和人工智能(AI)技术越来越受到关注,因此越来越多的开发人员正在尝试将它们纳入各种项目中。如果使用正确的语言,这是可能的。
根据让·弗朗索瓦·普吉,IBM的机器学习部门的代表,Python是ML和AI项目的顶尖语言,许多开发商同意。Python具有高效的ML软件包,用于可视化结果的工具,并且远远超出了数据分析和其他使该应用程序领域受益的功能。
Python确实是机器学习和人工智能最火热的语言,没有之一。
最典型的用语在线语音合成,在线语音识别,如果你的项目是建立一个人工智能的web应用,那么Python再适合不过了。
8、作为应用程序脚本
由于Python与C,C ++和Java的强大集成,Python可以很方便地用于应用程序脚本编写。从一开始就被设计为可嵌入的,它对于自定义大型应用程序并为其进行扩展非常有用。
不敢说Python可以代替Lua,不过Python可以和Lua那样被嵌入C/C++中。
9、软件测试
Python用于测试自动化。许多QA自动化专家选择Python是因为它具有简单的学习曲线-对于技术背景较为有限的人(强大的社区,清晰的语法和可读性)也非常有用。Python甚至有一个易于使用的单元测试框架(例如,您可以使用它对移动应用程序执行地理位置测试)。
M年前我在一家路由生产商上班,那时候我看到测试部门用Tcl脚本去测试路由器端口,我当时就觉得很诧异,毕竟Tcl脚本的语法真的很怪异,相比这点,Python的语法真的干净简洁。
10、在原型制作中使用
用Python创建原型已被证明是一个快速而简单的过程。编程语言的敏捷性使代码重构变得容易,并且可以将初始原型快速开发为最终产品。
11、开源
Python具有开放源代码许可证,该许可证使用户可以轻松访问它,并有助于重新分发和无限制的修改。开发人员可以自由使用该语言并为它的改进做出贡献。
12、服务器端脚本
如上所述,使用Python进行服务器端脚本编写的优点之一是其简单的语法,从而大大加快了处理速度。该代码由功能模块及其之间的连接组成,可让您根据用户操作执行程序算法。Python还支持Web开发中所需的图形用户界面。
13、便携性和交互性
Python具有动态语义和快速原型制作的出色功能,这要归功于它的交互性和可移植性。它可以轻松地嵌入各种应用程序中,甚至是使用不同编码语言的应用程序。因此,您可以轻松修复新模块并扩展Python的核心词汇。它可以连接各种组件。难怪它有时被称为“胶水语言”。
推荐学习:《Python教程》
❾ python可以做前端吗
可以做前端开发但是还是需要javascript的辅助。python并不能直接在浏览器运行,所以有很多功能需要javascript来做,不过如果只是基本的显示和表格操作的话python是可以完成的。