㈠ 爬虫python的爬取步骤
总共三步
定义item类
开发spider类
开发pipeline
这些知识可以用 “疯狂python讲义”这本书学习到
㈡ python爬虫一般都爬什么信息
python爬虫一般都爬什么信息?
一般说爬虫的时候,大部分程序员潜意识里都会联想为Python爬虫,为什么会这样,我觉得有两个原因:
1.Python生态极其丰富,诸如Request、Beautiful Soup、Scrapy、PySpider等第三方库实在强大
2.Python语法简洁易上手,分分钟就能写出一个爬虫(有人吐槽Python慢,但是爬虫的瓶颈和语言关系不大)
爬虫是一个程序,这个程序的目的就是为了抓取万维网信息资源,比如你日常使用的谷歌等搜索引擎,搜索结果就全都依赖爬虫来定时获取
看上述搜索结果,除了wiki相关介绍外,爬虫有关的搜索结果全都带上了Python,前人说Python爬虫,现在看来果然诚不欺我~
爬虫的目标对象也很丰富,不论是文字、图片、视频,任何结构化非结构化的数据爬虫都可以爬取,爬虫经过发展,也衍生出了各种爬虫类型:
● 通用网络爬虫:爬取对象从一些种子 URL 扩充到整个 Web,搜索引擎干的就是这些事
● 垂直网络爬虫:针对特定领域主题进行爬取,比如专门爬取小说目录以及章节的垂直爬虫
● 增量网络爬虫:对已经抓取的网页进行实时更新
● 深层网络爬虫:爬取一些需要用户提交关键词才能获得的 Web 页面
不想说这些大方向的概念,让我们以一个获取网页内容为例,从爬虫技术本身出发,来说说网页爬虫,步骤如下:
模拟请求网页资源
从HTML提取目标元素
数据持久化
相关推荐:《Python教程》以上就是小编分享的关于python爬虫一般都爬什么信息的详细内容希望对大家有所帮助,更多有关python教程请关注环球青藤其它相关文章!
㈢ Python爬取知乎与我所理解的爬虫与反爬虫
关于知乎验证码登陆的问题,用到了Python上一个重要的图片处理库PIL,如果不行,就把图片存到本地,手动输入。
通过对知乎登陆是的抓包,可以发现登陆知乎,需要post三个参数,一个是账号,一个是密码,一个是xrsf。
这个xrsf隐藏在表单里面,每次登陆的时候,应该是服务器随机产生一个字符串。所有,要模拟登陆的时候,必须要拿到xrsf。
用chrome (或者火狐 httpfox 抓包分析)的结果:
所以,必须要拿到xsrf的数值,注意这是一个动态变化的参数,每次都不一样。
拿到xsrf,下面就可以模拟登陆了。
使用requests库的session对象,建立一个会话的好处是,可以把同一个用户的不同请求联系起来,直到会话结束都会自动处理cookies。
注意:cookies 是当前目录的一个文件,这个文件保存了知乎的cookie,如果是第一个登陆,那么当然是没有这个文件的,不能通过cookie文件来登陆。必须要输入密码。
这是登陆的函数,通过login函数来登陆,post 自己的账号,密码和xrsf 到知乎登陆认证的页面上去,然后得到cookie,将cookie保存到当前目录下的文件里面。下次登陆的时候,直接读取这个cookie文件。
这是cookie文件的内容
以下是源码:
运行结果:
https://github.com/zhaozhengcoder/Spider/tree/master/spider_hu
反爬虫最基本的策略:
爬虫策略:
这两个都是在http协议的报文段的检查,同样爬虫端可以很方便的设置这些字段的值,来欺骗服务器。
反爬虫进阶策略:
1.像知乎一样,在登录的表单里面放入一个隐藏字段,里面会有一个随机数,每次都不一样,这样除非你的爬虫脚本能够解析这个随机数,否则下次爬的时候就不行了。
2.记录访问的ip,统计访问次数,如果次数太高,可以认为这个ip有问题。
爬虫进阶策略:
1.像这篇文章提到的,爬虫也可以先解析一下隐藏字段的值,然后再进行模拟登录。
2.爬虫可以使用ip代理池的方式,来避免被发现。同时,也可以爬一会休息一会的方式来降低频率。另外,服务器根据ip访问次数来进行反爬,再ipv6没有全面普及的时代,这个策略会很容易造成误伤。(这个是我个人的理解)。
通过Cookie限制进行反爬虫:
和Headers校验的反爬虫机制类似,当用户向目标网站发送请求时,会再请求数据中携带Cookie,网站通过校验请求信息是否存在Cookie,以及校验Cookie的值来判定发起访问请求的到底是真实的用户还是爬虫,第一次打开网页会生成一个随机cookie,如果再次打开网页这个Cookie不存在,那么再次设置,第三次打开仍然不存在,这就非常有可能是爬虫在工作了。
反爬虫进进阶策略:
1.数据投毒,服务器在自己的页面上放置很多隐藏的url,这些url存在于html文件文件里面,但是通过css或者js使他们不会被显示在用户看到的页面上面。(确保用户点击不到)。那么,爬虫在爬取网页的时候,很用可能取访问这个url,服务器可以100%的认为这是爬虫干的,然后可以返回给他一些错误的数据,或者是拒绝响应。
爬虫进进阶策略:
1.各个网站虽然需要反爬虫,但是不能够把网络,谷歌这样的搜索引擎的爬虫给干了(干了的话,你的网站在网络都说搜不到!)。这样爬虫应该就可以冒充是网络的爬虫去爬。(但是ip也许可能被识破,因为你的ip并不是网络的ip)
反爬虫进进进阶策略:
给个验证码,让你输入以后才能登录,登录之后,才能访问。
爬虫进进进阶策略:
图像识别,机器学习,识别验证码。不过这个应该比较难,或者说成本比较高。
参考资料:
廖雪峰的python教程
静觅的python教程
requests库官方文档
segmentfault上面有一个人的关于知乎爬虫的博客,找不到链接了
㈣ Python 爬虫为什么只爬取到一个html页中的部分内容
有些js加载的内容只要当你的电脑屏幕或者鼠标滑到某个位置时,才会动态加载内容,这些内容不会在源码里体现,而python爬虫只是爬源码而已,如果想满足你的需求,可以试试phantomjs模拟浏览器,祝你成功。
二营长SEO
㈤ 如何用Python做爬虫
1)首先你要明白爬虫怎样工作。
想象你是一只蜘蛛,现在你被放到了互联“网”上。那么,你需要把所有的网页都看一遍。怎么办呢?没问题呀,你就随便从某个地方开始,比如说人民日报的首页,这个叫initial pages,用$表示吧。
在人民日报的首页,你看到那个页面引向的各种链接。于是你很开心地从爬到了“国内新闻”那个页面。太好了,这样你就已经爬完了俩页面(首页和国内新闻)!暂且不用管爬下来的页面怎么处理的,你就想象你把这个页面完完整整抄成了个html放到了你身上。
突然你发现, 在国内新闻这个页面上,有一个链接链回“首页”。作为一只聪明的蜘蛛,你肯定知道你不用爬回去的吧,因为你已经看过了啊。所以,你需要用你的脑子,存下你已经看过的页面地址。这样,每次看到一个可能需要爬的新链接,你就先查查你脑子里是不是已经去过这个页面地址。如果去过,那就别去了。
好的,理论上如果所有的页面可以从initial page达到的话,那么可以证明你一定可以爬完所有的网页。
那么在python里怎么实现呢?
很简单
import Queue
initial_page = "初始化页"
url_queue = Queue.Queue()
seen = set()
seen.insert(initial_page)
url_queue.put(initial_page)
while(True): #一直进行直到海枯石烂
if url_queue.size()>0:
current_url = url_queue.get() #拿出队例中第一个的url
store(current_url) #把这个url代表的网页存储好
for next_url in extract_urls(current_url): #提取把这个url里链向的url
if next_url not in seen:
seen.put(next_url)
url_queue.put(next_url)
else:
break
写得已经很伪代码了。
所有的爬虫的backbone都在这里,下面分析一下为什么爬虫事实上是个非常复杂的东西——搜索引擎公司通常有一整个团队来维护和开发。
2)效率
如果你直接加工一下上面的代码直接运行的话,你需要一整年才能爬下整个豆瓣的内容。更别说Google这样的搜索引擎需要爬下全网的内容了。
问题出在哪呢?需要爬的网页实在太多太多了,而上面的代码太慢太慢了。设想全网有N个网站,那么分析一下判重的复杂度就是N*log(N),因为所有网页要遍历一次,而每次判重用set的话需要log(N)的复杂度。OK,OK,我知道python的set实现是hash——不过这样还是太慢了,至少内存使用效率不高。
通常的判重做法是怎样呢?Bloom Filter. 简单讲它仍然是一种hash的方法,但是它的特点是,它可以使用固定的内存(不随url的数量而增长)以O(1)的效率判定url是否已经在set中。可惜天下没有白吃的午餐,它的唯一问题在于,如果这个url不在set中,BF可以100%确定这个url没有看过。但是如果这个url在set中,它会告诉你:这个url应该已经出现过,不过我有2%的不确定性。注意这里的不确定性在你分配的内存足够大的时候,可以变得很小很少。一个简单的教程:Bloom Filters by Example
注意到这个特点,url如果被看过,那么可能以小概率重复看一看(没关系,多看看不会累死)。但是如果没被看过,一定会被看一下(这个很重要,不然我们就要漏掉一些网页了!)。 [IMPORTANT: 此段有问题,请暂时略过]
好,现在已经接近处理判重最快的方法了。另外一个瓶颈——你只有一台机器。不管你的带宽有多大,只要你的机器下载网页的速度是瓶颈的话,那么你只有加快这个速度。用一台机子不够的话——用很多台吧!当然,我们假设每台机子都已经进了最大的效率——使用多线程(python的话,多进程吧)。
3)集群化抓取
爬取豆瓣的时候,我总共用了100多台机器昼夜不停地运行了一个月。想象如果只用一台机子你就得运行100个月了...
那么,假设你现在有100台机器可以用,怎么用python实现一个分布式的爬取算法呢?
我们把这100台中的99台运算能力较小的机器叫作slave,另外一台较大的机器叫作master,那么回顾上面代码中的url_queue,如果我们能把这个queue放到这台master机器上,所有的slave都可以通过网络跟master联通,每当一个slave完成下载一个网页,就向master请求一个新的网页来抓取。而每次slave新抓到一个网页,就把这个网页上所有的链接送到master的queue里去。同样,bloom filter也放到master上,但是现在master只发送确定没有被访问过的url给slave。Bloom Filter放到master的内存里,而被访问过的url放到运行在master上的Redis里,这样保证所有操作都是O(1)。(至少平摊是O(1),Redis的访问效率见:LINSERT – Redis)
考虑如何用python实现:
在各台slave上装好scrapy,那么各台机子就变成了一台有抓取能力的slave,在master上装好Redis和rq用作分布式队列。
代码于是写成
#slave.py
current_url = request_from_master()
to_send = []
for next_url in extract_urls(current_url):
to_send.append(next_url)
store(current_url);
send_to_master(to_send)
#master.py
distributed_queue = DistributedQueue()
bf = BloomFilter()
initial_pages = "www.renmingribao.com"
while(True):
if request == 'GET':
if distributed_queue.size()>0:
send(distributed_queue.get())
else:
break
elif request == 'POST':
bf.put(request.url)
好的,其实你能想到,有人已经给你写好了你需要的:darkrho/scrapy-redis · GitHub
4)展望及后处理
虽然上面用很多“简单”,但是真正要实现一个商业规模可用的爬虫并不是一件容易的事。上面的代码用来爬一个整体的网站几乎没有太大的问题。
但是如果附加上你需要这些后续处理,比如
有效地存储(数据库应该怎样安排)
有效地判重(这里指网页判重,咱可不想把人民日报和抄袭它的大民日报都爬一遍)
有效地信息抽取(比如怎么样抽取出网页上所有的地址抽取出来,“朝阳区奋进路中华道”),搜索引擎通常不需要存储所有的信息,比如图片我存来干嘛...
及时更新(预测这个网页多久会更新一次)
如你所想,这里每一个点都可以供很多研究者十数年的研究。虽然如此,
“路漫漫其修远兮,吾将上下而求索”。
所以,不要问怎么入门,直接上路就好了:)
㈥ 我想用python爬虫爬取数据,但是数据格式不是很懂,谁能给我说说怎么爬取
这已经是一个json格式的文本了,直接把文本请求下来转换成json就行了,就会变成python里dict和list嵌套的结构
㈦ python做爬虫的时候为什么不能连续爬取一个源
你可以根据日志查一下,看看程序再抓哪些页面的时候死了,再分析一下为什么死。有些网站为了防止爬虫会采取一些措施,比如给你设计一个链接,你打开这个链接后跳到另一个页面,这个页面上还有一个链接,又链接到原来的页面