导航:首页 > 编程语言 > hbase编程实例

hbase编程实例

发布时间:2022-09-22 15:46:56

❶ Hadoop与Hbase集群编程,在对Hbase集群编程是出现问题,输出的日志,求大神讲解问题所在

hadoop的path路径没有配置给hbase,把少的jar拷贝到hbase/lib目录下也行

❷ hbase的特点

hbase的特点:高可靠性、高性能、面向列、可伸缩的。

HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。

HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。

(2)hbase编程实例扩展阅读

访问接口:

1. Native java API,最常规和高效的访问方式,适合Hadoop MapRece Job并行批处理HBase表数据

2. HBase Shell,HBase的命令行工具,最简单的接口,适合HBase管理使用

3. Thrift Gateway,利用Thrift序列化技术,支持C++,PHP,python等多种语言,适合其他异构系统在线访问HBase表数据

4. REST Gateway,支持REST 风格的Http API访问HBase, 解除了语言限制

5. Pig,可以使用Pig Latin流式编程语言来操作HBase中的数据,和Hive类似,本质最终也是编译成MapRece Job来处理HBase表数据,适合做数据统计。

❸ hbase实战 hbase权威指南哪本好书

《HBase原理与实践》、《HBase实战》、《HBase权威指南》、《HBase企业应用开发实战》、《HBase入门与实践》。以上书籍都是与hbase相关的专业性书籍,作者由浅入深地介绍了hbase的技术与应用。

5、《HBase入门与实践》:全书共分为3个部分。前两个部分分别介绍了分布式系统和大规模数据处理的发展历史;第三部分通过真实的应用和代码示例以及支持这些实践技巧的理论知识,进一步探索HBase的一些实用技术。

❹ hbase执行一条语句插入一行数据,java编程实现类似executeUpdate(sql);

可以一次插入一行啊,HTableInterface.put(Put p)插入一个Put对象
public Put(byte [] row) 一个对象就是一行

public Put add(byte [] family, byte [] qualifier, long ts, byte [] value);继续添加列

❺ hbase 数据库概念设计怎么写

数据库设计报告对数据库管理和维护来说是很重要的。不过数据库设计完成的话,设计报告还是比设计数据库简单点的。首先要把数据库的设计初衷和最终需要实现的效果说明清楚,然后阐明为了实现这些初衷和效果建立了哪些表以及这些表的结构、字段类型等等,还需要说明一些库设计中遇到的问题和注意点,如果有存储过程等编程方面的设计,也要说明清楚。最后可以有一些设计时的心得体会。
数据库设计报告是存技术性的,条理要很清楚,说明思路要清晰、全面,只要做到这些,写好数据库设计报告应该不难的。

❻ hbase是怎样删除和修改数据的

hbase提供了对hbase进行一系列的管理涉及到对表的管理、数据的操作java
api。
常用的api操作有:
1、
对表的创建、删除、显示以及修改等,可以用hbaseadmin,一旦创建了表,那么可以通过htable的实例来访问表,每次可以往表里增加数据

❼ hbase是怎样删除和修改数据的

HBase提供了对HBase进行一系列的管理涉及到对表的管理、数据的操作java
api。
常用的API操作有:
1、
对表的创建、删除、显示以及修改等,可以用HBaseAdmin,一旦创建了表,那么可以通过HTable的实例来访问表,每次可以往表里增加数据

❽ hbase是什么工具

将数据导入HBase中有如下几种方式:使用HBase的API中的Put方法使用HBase 的bulk load 工具使用定制的MapRece Job方式 使用HBase的API中的Put是最直接的方法,用法也很容易学习。但针对大部分情况,它并非都是最高效的方式。当需要将海量数据在规定时间内载入HBase中时,效率问题体现得尤为明显。待处理的数据量一般都是巨大的,这也许是为何我们选择了HBase而不是其他数据库的原因。在项目开始之前,你就该思考如何将所有能够很好的将数据转移进HBase,否则之后可能面临严重的性能问题。 HBase有一个名为 bulk load的功能支持将海量数据高效地装载入HBase中。Bulk load是通过一个MapRece Job来实现的,通过Job直接生成一个HBase的内部HFile格式文件来形成一个特殊的HBase数据表,然后直接将数据文件加载到运行的集群中。使用bulk load功能最简单的方式就是使用importtsv 工具。importtsv 是从TSV文件直接加载内容至HBase的一个内置工具。它通过运行一个MapRece Job,将数据从TSV文件中直接写入HBase的表或者写入一个HBase的自有格式数据文件。尽管importtsv 工具在需要将文本数据导入HBase的时候十分有用,但是有一些情况,比如导入其他格式的数据,你会希望使用编程来生成数据,而MapRece是处理海量数据最有效的方式。这可能也是HBase中加载海量数据唯一最可行的方法了。当然我们可以使用MapRece向HBase导入数据,但海量的数据集会使得MapRece Job也变得很繁重。若处理不当,则可能使得MapRece的job运行时的吞吐量很小。在HBase中数据合并是一项频繁执行写操作任务,除非我们能够生成HBase的内部数据文件,并且直接加载。这样尽管HBase的写入速度一直很快,但是若合并过程没有合适的配置,也有可能造成写操作时常被阻塞。写操作很重的任务可能引起的另一个问题就是将数据写入了相同的族群服务器(region server),这种情况常出现在将海量数据导入到一个新建的HBase中。一旦数据集中在相同的服务器,整个集群就变得不平衡,并且写速度会显着的降低。我们将会在本文中致力于解决这些问题。我们将从一个简单的任务开始,使用API中的Put方法将MySQL中的数据导入HBase。接着我们会描述如何使用 importtsv 和 bulk load将TSV数据文件导入HBase。我们也会有一个MapRece样例展示如何使用其他数据文件格式来导入数据。上述方式都包括将数据直接写入HBase中,以及在HDFS中直接写入HFile类型文件。本文中最后一节解释在向HBase导入数据之前如何构建好集群。本文代码均是以Java编写,我们假设您具有基本Java知识,所以我们将略过如何编译与打包文中的Java示例代码,但我们会在示例源码中进行注释。

❾ hbase是如何做到并发写的和随机写的

阅读数:9381
Hbase概述
hbase是一个构建在HDFS上的分布式列存储系统。HBase是Apache Hadoop生态系统中的重要 一员,主要用于海量结构化数据存储。从逻辑上讲,HBase将数据按照表、行和列进行存储。

如图所示,Hbase构建在HDFS之上,hadoop之下。其内部管理的文件全部存储在HDFS中。与HDFS相比两者都具有良好的容错性和扩展性,都可以 扩展到成百上千个节点。但HDFS适合批处理场景,不支持数据随机查找,不适合增量数据处理且不支持数据更新。

Hbase是列存储的非关系数据库。传统数据库MySQL等,数据是按行存储的。其没有索引的查询将消耗大量I/O 并且建立索引和物化视图需要花费大量时间和资源。因此,为了满足面向查询的需求,数据库必须被大量膨胀才能满 足性能要求。
Hbase数据是按列存储-每一列单独存放。列存储的优点是数据即是索引。访问查询涉及的列-大量降低系统I/O 。并且每一列由一个线索来处理,可以实现查询的并发处理。基于Hbase数据类型一致性,可以实现数据库的高效压缩
HBase数据模型

HBase是基于Google BigTable模型开发的, 典型的key/value系统。一个Row key对应很多Column Family,Column Family中有很多Column。其中,保存了不同时间戳的数据。

如图所示,Rowkey cutting对应列簇info和roles。其中,info中有key-value对hight-9ft,state-CA。更清晰的结构如下图所:
Hbase的所有操作均是基于rowkey的。支持CRUD(Create、Read、Update和Delete)和 Scan操作。 包括单行操作Put 、Get、Scan。多行操作包括Scan和MultiPut。但没有内置join操作,可使用MapRece解决。

HBase物理模型

Hbase的Table中的所有行都按照row key的字典序排列。Table 在行的方向上分割为多个Region。、Region按大小分割的,每个表开始只有一个region,随 着数据增多,region不断增大,当增大到一个阀值的时候, region就会等分会两个新的region,之后会有越来越多的 region。
Region是HBase中分布式存储和负载均衡的最小单元。 不同Region分布到不同RegionServer上。

Region虽然是分布式存储的最小单元,但并不是存储 的最小单元。Region由一个或者多个Store组成,每个store保存一个 columns family。每个Strore又由一个memStore和0至多个StoreFile组成。memStore存储在内存中,StoreFile存储在HDFS上。
HBase基本架构

HBase构建在HDFS之上,其组件包括 Client、zookeeper、HDFS、Hmaster以及HRegionServer。Client包含访问HBase的接口,并维护cache来加快对HBase的访问。Zookeeper用来保证任何时候,集群中只有一个master,存贮所有Region的寻址入口以及实时监控Region server的上线和下线信息。并实时通知给Master存储HBase的schema和table元数据。HMaster负责为Region server分配region和Region server的负载均衡。如果发现失效的Region server并重新分配其上的region。同时,管理用户对table的增删改查操作。Region Server 负责维护region,处理对这些region的IO请求并且切分在运行过程中变得过大的region。

HBase 依赖ZooKeeper,默认情况下,HBase 管理ZooKeeper 实例。比如, 启动或者停止ZooKeeper。Master与RegionServers 启动时会向ZooKeeper注册。因此,Zookeeper的引入使得 Master不再是单点故障。

Client每次写数据库之前,都会首先血Hlog日志。记录写操作。如果不做日志记录,一旦发生故障,操作将不可恢复。HMaster一旦故障,Zookeeper将重新选择一个新的Master 。无Master过程中,数据读取仍照常进行。但是,无master过程中,region切分、负载均衡等无法进行。RegionServer出现故障的处理原理是定时向Zookeeper汇报心跳,如果一旦时 间内未出现心跳HMaster将该RegionServer上的Region重新分配到其他RegionServer上。失效服务器上“预写”日志由主服务器进行分割并派送给新的 RegionServer 。Zookeeper是一个可靠地服务,一般配置3或5个Zookeeper实例。
寻找RegionServer定位的顺序是ZooKeeper --ROOT-(单Region) -.META. -用户表 。如上图所示。-ROOT- 表包含.META.表所在的region列表,该表只会有一 个Region。 Zookeeper中记录了-ROOT-表的location。 .META. 表包含所有的用户空间region列表,以及 RegionServer的服务器地址
HBase应用举例

Hbase适合需对数据进行随机读操作或者随机写操作、大数据上高并发操作,比如每秒对PB级数据进行上千次操作以及读写访问均是非常简单的操作。
淘宝指数是Hbase在淘宝的一个典型应用。交易历史纪录查询很适合用Hbase作为底层数据库。

❿ 有没有Python写的spark连接Hbase的例子

没有sprak写得连接hbase的例子
spark编程python实例
ValueError: Cannot run multiple SparkContexts at once; existing SparkContext(app=PySparkShell, master=local[])
1.pyspark在jupyter notebook中开发,测试,提交
1.1.启动
IPYTHON_OPTS="notebook" /opt/spark/bin/pyspark11

下载应用,将应用下载为.py文件(默认notebook后缀是.ipynb)

在shell中提交应用
wxl@wxl-pc:/opt/spark/bin$ spark-submit /bin/spark-submit /home/wxl/Downloads/pysparkdemo.py11

!
3.遇到的错误及解决
ValueError: Cannot run multiple SparkContexts at once; existing SparkContext(app=PySparkShell, master=local[*])
d*
3.1.错误
ValueError: Cannot run multiple SparkContexts at once; existing SparkContext(app=PySparkShell, master=local[*])
d*
ValueError: Cannot run multiple SparkContexts at once; existing SparkContext(app=PySparkShell, master=local[*]) created by <mole> at /usr/local/lib/python2.7/dist-packages/IPython/utils/py3compat.py:28811

3.2.解决,成功运行
在from之后添加
try:
sc.stop()
except:
pass
sc=SparkContext('local[2]','First Spark App')1234512345

贴上错误解决方法来源StackOverFlow
4.源码
pysparkdemo.ipynb
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from pyspark import SparkContext"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"try:\n",
" sc.stop()\n",
"except:\n",
" pass\n",
"sc=SparkContext('local[2]','First Spark App')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"data = sc.textFile(\"data/UserPurchaseHistory.csv\").map(lambda line: line.split(\",\")).map(lambda record: (record[0], record[1], record[2]))"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total purchases: 5\n"
]
}
],
"source": [
"numPurchases = data.count()\n",
"print \"Total purchases: %d\" % numPurchases"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

pysparkdemo.py

# coding: utf-8

# In[1]:

from pyspark import SparkContext

# In[2]:

try:
sc.stop()
except:
pass
sc=SparkContext('local[2]','First Spark App')

# In[3]:

data = sc.textFile("data/UserPurchaseHistory.csv").map(lambda line: line.split(",")).map(lambda record: (record[0], record[1], record[2]))

# In[4]:

numPurchases = data.count()
print "Total purchases: %d" % numPurchases

# In[ ]:

阅读全文

与hbase编程实例相关的资料

热点内容
pdf光子 浏览:832
自拍软件文件夹名称大全 浏览:325
程序员留学移民 浏览:49
梁中间部位箍筋加密区 浏览:117
频谱分析pdf 浏览:750
乐2怎么升级安卓70 浏览:172
java中获取日期 浏览:506
单片机74hc245 浏览:272
美国历史上的总统pdf 浏览:751
程序员脱单实验室靠不靠谱 浏览:458
php中间四位手机号 浏览:870
永旺app怎么样了 浏览:516
压缩空气流量计算软件 浏览:650
智慧聊天app怎么激活 浏览:924
一加换机备份到哪个文件夹 浏览:736
支撑pdf 浏览:417
java空文件夹删除 浏览:587
安卓9跟81有什么区别 浏览:912
n1蓝宝书pdf 浏览:244
为什么安卓机拍照那么丑 浏览:696