导航:首页 > 编程语言 > python读取整个文件

python读取整个文件

发布时间:2022-09-24 00:24:42

python怎么读取txt文件

方法一:


f=open("foo.txt")#返回一个文件对象
line=f.readline()#调用文件的readline()方法
whileline:
printline,#后面跟','将忽略换行符
#print(line,end='')#在Python3中使用
line=f.readline()

f.close()

方法二:
for line in open("foo.txt"):
print line,

方法三:

f=open("c:\1.txt","r")

lines=f.readlines()#读取全部内容

forlineinlines

printline

黑马程序员的Python课程非常的全面系统,网上也有很多的免费教程,想学习的小伙伴,可以下载学习下。

⑵ python如何读取excel文件

1.首先说明我是使用的python3.5,我的office版本是2010,首先打开dos命令窗,安装必须的两个库,命令是:

pip3 install xlrd

Pip3 install xlwt

2.准备好excel,例如我的一个工作文件,我放在D盘/网络经验/11.xlsx,只有一个页签A,内容是一些销售数据

3.打开pycharm,新建一个excel.py的文件,首先导入支持库

import xlrdimport xlwt

4.针对刚入门的新手,先介绍三个知识,第一个:获取excel的sheet名称,第二:获取excel行数与列数,第三:获取第几行第几列的具体值,这是最常用的三个知识点

5.贴出代码,具体分析:

(1)要操作excel,首先得打开excel,使用open_workbook(‘路径’)

(2)要获取行与列,使用nrows(行),ncols(列)

(3)获取具体的值,使用cell(row,col).value

workbook=xlrd.open_workbook(r'E:11.xlsx')print (workbook.sheet_names()) sheet2=workbook.sheet_by_name('A') nrows=sheet2.nrows ncols=sheet2.ncols print(nrows,ncols) cell_A=sheet2.cell(1,1).value print(cell_A)

6.要在excel里写入值,就要使用write属性,重点说明写入是用到xlwt这个支援库,思路是先新建excel,然后新建页签B,然后将一组数据写入到B,最后保存为excel.xls,这里建议保存为2003的格式,大部分电脑都能打开,特别注意保存的excel的路径是在python工作文件的目录下面,贴出代码:

stus = [['年', '月'], ['2018', '10'], ['2017', '9'], ['2016', '8']]Excel = xlwt.Workbook() # 新建excelsheet = Excel.add_sheet('B') #新建页签Brow = 0for stu in stus: col = 0 for s in stu: sheet.write(row, col, s) #开始写入 col = col + 1 row = row + 1Excel.save('Excel.xls') #保存

关于python如何读取excel文件,青藤小编就和您分享到这里了。如果您对python编程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于python编程的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑶ python 读取文件

#!/usr/bin/python2.7
import random,re
f0=file('proxys.txt','r')
dat0=f0.readlines()
f0.close()
#提取含有$1sec的行(我理解你想按sec的大小排序。)
dat1=[]
for i in dat0:
dat1.append((i,re.search(r'\$(\d+)sec',i).group(1)))
#现在dat1里面的数据是在原来的每一行前面加了一列sec的值。
dat2=[]
for i in dat1:
if i[0]==1:
dat2.append(i[1])
#现在取出了所有sec==1的行,随机取一行
dat3=random.choice(dat2)
c1=re.search(r'((\d{1,3}\.?){4}):(\d+)',dat3).group(1)
c2=re.search(r'((\d{1,3}\.?){4}):(\d+)',dat3).group(3)

⑷ python 读取CSV 文件

读取一个CSV 文件

最全的

一个简化版本

filepath_or_buffer : str,pathlib。str, pathlib.Path, py._path.local.LocalPath or any object with a read() method (such as a file handle or StringIO)

可以是URL,可用URL类型包括:http, ftp, s3和文件。对于多文件正在准备中

本地文件读取实例:://localhost/path/to/table.csv

**sep **: str, default ‘,’

指定分隔符。如果不指定参数,则会尝试使用逗号分隔。分隔符长于一个字符并且不是‘s+’,将使用python的语法分析器。并且忽略数据中的逗号。正则表达式例子:' '

**delimiter **: str, default None

定界符,备选分隔符(如果指定该参数,则sep参数失效)

delim_whitespace : boolean, default False.

指定空格(例如’ ‘或者’ ‘)是否作为分隔符使用,等效于设定sep='s+'。如果这个参数设定为Ture那么delimiter 参数失效。

在新版本0.18.1支持

header : int or list of ints, default ‘infer’

指定行数用来作为列名,数据开始行数。如果文件中没有列名,则默认为0,否则设置为None。如果明确设定header=0 就会替换掉原来存在列名。header参数可以是一个list例如:[0,1,3],这个list表示将文件中的这些行作为列标题(意味着每一列有多个标题),介于中间的行将被忽略掉。

注意:如果skip_blank_lines=True 那么header参数忽略注释行和空行,所以header=0表示第一行数据而不是文件的第一行。

**names **: array-like, default None

用于结果的列名列表,如果数据文件中没有列标题行,就需要执行header=None。默认列表中不能出现重复,除非设定参数mangle_pe_cols=True。

index_col : int or sequence or False, default None

用作行索引的列编号或者列名,如果给定一个序列则有多个行索引。

如果文件不规则,行尾有分隔符,则可以设定index_col=False 来是的pandas不适用第一列作为行索引。

usecols : array-like, default None

返回一个数据子集,该列表中的值必须可以对应到文件中的位置(数字可以对应到指定的列)或者是字符传为文件中的列名。例如:usecols有效参数可能是 [0,1,2]或者是 [‘foo’, ‘bar’, ‘baz’]。使用这个参数可以加快加载速度并降低内存消耗。

as_recarray : boolean, default False

不赞成使用:该参数会在未来版本移除。请使用pd.read_csv(...).to_records()替代。

返回一个Numpy的recarray来替代DataFrame。如果该参数设定为True。将会优先squeeze参数使用。并且行索引将不再可用,索引列也将被忽略。

**squeeze **: boolean, default False

如果文件值包含一列,则返回一个Series

**prefix **: str, default None

在没有列标题时,给列添加前缀。例如:添加‘X’ 成为 X0, X1, ...

**mangle_pe_cols **: boolean, default True

重复的列,将‘X’...’X’表示为‘X.0’...’X.N’。如果设定为false则会将所有重名列覆盖。

dtype : Type name or dict of column -> type, default None

每列数据的数据类型。例如 {‘a’: np.float64, ‘b’: np.int32}

**engine **: {‘c’, ‘python’}, optional

Parser engine to use. The C engine is faster while the python engine is currently more feature-complete.

使用的分析引擎。可以选择C或者是python。C引擎快但是Python引擎功能更加完备。

converters : dict, default None

列转换函数的字典。key可以是列名或者列的序号。

true_values : list, default None

Values to consider as True

false_values : list, default None

Values to consider as False

**skipinitialspace **: boolean, default False

忽略分隔符后的空白(默认为False,即不忽略).

skiprows : list-like or integer, default None

需要忽略的行数(从文件开始处算起),或需要跳过的行号列表(从0开始)。

skipfooter : int, default 0

从文件尾部开始忽略。 (c引擎不支持)

skip_footer : int, default 0

不推荐使用:建议使用skipfooter ,功能一样。

nrows : int, default None

需要读取的行数(从文件头开始算起)。

na_values : scalar, str, list-like, or dict, default None

一组用于替换NA/NaN的值。如果传参,需要制定特定列的空值。默认为‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘nan’`.

**keep_default_na **: bool, default True

如果指定na_values参数,并且keep_default_na=False,那么默认的NaN将被覆盖,否则添加。

**na_filter **: boolean, default True

是否检查丢失值(空字符串或者是空值)。对于大文件来说数据集中没有空值,设定na_filter=False可以提升读取速度。

verbose : boolean, default False

是否打印各种解析器的输出信息,例如:“非数值列中缺失值的数量”等。

skip_blank_lines : boolean, default True

如果为True,则跳过空行;否则记为NaN。

**parse_dates **: boolean or list of ints or names or list of lists or dict, default False

infer_datetime_format : boolean, default False

如果设定为True并且parse_dates 可用,那么pandas将尝试转换为日期类型,如果可以转换,转换方法并解析。在某些情况下会快5~10倍。

**keep_date_col **: boolean, default False

如果连接多列解析日期,则保持参与连接的列。默认为False。

date_parser : function, default None

用于解析日期的函数,默认使用dateutil.parser.parser来做转换。Pandas尝试使用三种不同的方式解析,如果遇到问题则使用下一种方式。

1.使用一个或者多个arrays(由parse_dates指定)作为参数;

2.连接指定多列字符串作为一个列作为参数;

3.每行调用一次date_parser函数来解析一个或者多个字符串(由parse_dates指定)作为参数。

**dayfirst **: boolean, default False

DD/MM格式的日期类型

**iterator **: boolean, default False

返回一个TextFileReader 对象,以便逐块处理文件。

chunksize : int, default None

文件块的大小, See IO Tools docs for more information on iterator and chunksize.

compression : {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’

直接使用磁盘上的压缩文件。如果使用infer参数,则使用 gzip, bz2, zip或者解压文件名中以‘.gz’, ‘.bz2’, ‘.zip’, or ‘xz’这些为后缀的文件,否则不解压。如果使用zip,那么ZIP包中国必须只包含一个文件。设置为None则不解压。

新版本0.18.1版本支持zip和xz解压

thousands : str, default None

千分位分割符,如“,”或者“."

decimal : str, default ‘.’

字符中的小数点 (例如:欧洲数据使用’,‘).

float_precision : string, default None

Specifies which converter the C engine should use for floating-point values. The options are None for the ordinary converter, high for the high-precision converter, and round_trip for the round-trip converter.

指定

**lineterminator **: str (length 1), default None

行分割符,只在C解析器下使用。

**quotechar **: str (length 1), optional

引号,用作标识开始和解释的字符,引号内的分割符将被忽略。

quoting : int or csv.QUOTE_* instance, default 0

控制csv中的引号常量。可选 QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3)

doublequote : boolean, default True

双引号,当单引号已经被定义,并且quoting 参数不是QUOTE_NONE的时候,使用双引号表示引号内的元素作为一个元素使用。

escapechar : str (length 1), default None

当quoting 为QUOTE_NONE时,指定一个字符使的不受分隔符限值。

comment : str, default None

标识着多余的行不被解析。如果该字符出现在行首,这一行将被全部忽略。这个参数只能是一个字符,空行(就像skip_blank_lines=True)注释行被header和skiprows忽略一样。例如如果指定comment='#' 解析‘#empty a,b,c 1,2,3’ 以header=0 那么返回结果将是以’a,b,c'作为header。

encoding : str, default None

指定字符集类型,通常指定为'utf-8'. List of Python standard encodings

dialect : str or csv.Dialect instance, default None

如果没有指定特定的语言,如果sep大于一个字符则忽略。具体查看csv.Dialect 文档

tupleize_cols : boolean, default False

Leave a list of tuples on columns as is (default is to convert to a Multi Index on the columns)

error_bad_lines : boolean, default True

如果一行包含太多的列,那么默认不会返回DataFrame ,如果设置成false,那么会将改行剔除(只能在C解析器下使用)。

warn_bad_lines : boolean, default True

如果error_bad_lines =False,并且warn_bad_lines =True 那么所有的“bad lines”将会被输出(只能在C解析器下使用)。

**low_memory **: boolean, default True

分块加载到内存,再低内存消耗中解析。但是可能出现类型混淆。确保类型不被混淆需要设置为False。或者使用dtype 参数指定类型。注意使用chunksize 或者iterator 参数分块读入会将整个文件读入到一个Dataframe,而忽略类型(只能在C解析器中有效)

**buffer_lines **: int, default None

不推荐使用,这个参数将会在未来版本移除,因为他的值在解析器中不推荐使用

compact_ints : boolean, default False

不推荐使用,这个参数将会在未来版本移除

如果设置compact_ints=True ,那么任何有整数类型构成的列将被按照最小的整数类型存储,是否有符号将取决于use_unsigned 参数

use_unsigned : boolean, default False

不推荐使用:这个参数将会在未来版本移除

如果整数列被压缩(i.e. compact_ints=True),指定被压缩的列是有符号还是无符号的。

memory_map : boolean, default False

如果使用的文件在内存内,那么直接map文件使用。使用这种方式可以避免文件再次进行IO操作。

ref:
http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html

⑸ Python随机读取文件实现实例

Python随机读取文件实现实例
这篇文章主要介绍了Python随机读取文件的相关资料,需要的朋友可以参考下
Python随机读取文件
代码如下
importosimportrandom rootdir="d:facetrain"file_names=[]forparent, dirnames, filenamesinos.walk(rootdir): #三个参数:分别返回1.父目录 2.所有文件夹名字(不含路径) 3.所有文件名字 file_names=filenames # for filename in filenames: #输出文件信息 # print("parent is" + parent) # print("filename is:" + filename) # print("the full name of the file is:" + os.path.join(parent, filename))x=random.randint(0,len(file_names)-1)print(file_names[x])
注意
1.本代码在Python3.5上测试通过
2.rootdir参数意为你要遍历的那个文件夹的目录,请根据自己的实际需要自行修改

⑹ python中读取excel文件

常用的简单的用法:

from xlrd import open_workbook
book=open_workbook(r'C:\Users\admin\Desktop\q.xlsx')
sheet=book.sheets_names()[0]#第一个工作表名称
sheet=data.sheet_by_name('Sheet1')#获得第一个工作表
sheet=book.sheets()[0]#获得第一个工作表
#获取总行数
nrows = table.nrows
#获取总列数
ncols = table.ncols
#工作表的数目
book.nsheets
sheet.cell(0,1)
sheet.row(0)
#读取第二列的内容,从第二行开始,并对其求和
sum(x.value for x in sheet.col(1,start_rowx=1))
sum(sheet.col_values(1,start_rowx=1))#同上

⑺ Python如何从文件读取数据

1.1 读取整个文件

要读取文件,需要一个包含几行文本的文件(文件PI_DESC.txt与file_reader.py在同一目录下)

PI_DESC.txt

3.1415926535
8979323846
2643383279
5028841971

file_reader.py

with open("PI_DESC.txt") as file_object:
contents = file_object.read()
print(contents)

我们可以看出,读取文件时,并没有使用colse()方法,那么未妥善的关闭文件,会不会导致文件收到损坏呢?在这里是不会的,因为我们在open()方法前边引入了关键字with,该关键字的作用是:在不需要访问文件后将其关闭

1.2文件路径

程序在读取文本文件的时候,如果不给定路径,那么它会先在当前目录下进行检索,有时候我们需要读取其他文件夹中的路径,例如:

⑻ python3 读取整个文件怎么实现

试试用read()

fileH = open('test')

fileH.read()

fileH.close()

⑼ python怎么读取txt文件全部数据

Python 读写文本文件

首先需要注意的是,txt文件是具有字符编码的,不同的txt字符编码可能不同。具体是什么编码,可以用 notepad++ 等文本编辑器查看。

读取文件建议使用 with...as... 结构,可以自动关闭文件。

withopen("text.txt","r")asf:
text=f.read()
print(text)

如果不用 with...as... 则必须手动关闭文件:

f=open("text.txt","r")
text=f.read()
f.close()
print(text)

如果读取的文件含有中文,使用内置的open可能会报错,这个时候要用到codecs模块:

importcodecs
withcodecs.open("text.txt","r",encoding="utf-8")asf:
text=f.read()
print(text)

(假设 text.txt 是 utf-8 编码)

⑽ python如何读取文件的内容

# _*_ coding: utf-8 _*_

import pandas as pd

# 获取文件的内容

def get_contends(path):

with open(path) as file_object:

contends = file_object.read()

return contends

# 将一行内容变成数组

def get_contends_arr(contends):

contends_arr_new = []

contends_arr = str(contends).split(']')

for i in range(len(contends_arr)):

if (contends_arr[i].__contains__('[')):

index = contends_arr[i].rfind('[')

temp_str = contends_arr[i][index + 1:]

if temp_str.__contains__('"'):

contends_arr_new.append(temp_str.replace('"', ''))

# print(index)

# print(contends_arr[i])

return contends_arr_new

if __name__ == '__main__':

path = 'event.txt'

contends = get_contends(path)

contends_arr = get_contends_arr(contends)

contents = []

for content in contends_arr:

contents.append(content.split(','))

df = pd.DataFrame(contents, columns=['shelf_code', 'robotid', 'event', 'time'])

(10)python读取整个文件扩展阅读:

python控制语句

1、if语句,当条件成立时运行语句块。经常与else, elif(相当于else if) 配合使用。

2、for语句,遍历列表、字符串、字典、集合等迭代器,依次处理迭代器中的每个元素。

3、while语句,当条件为真时,循环运行语句块。

4、try语句,与except,finally配合使用处理在程序运行中出现的异常情况。

5、class语句,用于定义类型。

6、def语句,用于定义函数和类型的方法。

阅读全文

与python读取整个文件相关的资料

热点内容
为什么安卓机拍照那么丑 浏览:694
服务器绑定云产品实例 浏览:313
程序员认真工作被开除 浏览:453
程序员送苹果 浏览:143
小程序绘图源码 浏览:968
如何购买域名和服务器阿里云 浏览:671
服务器地址及端口在哪里 浏览:695
腾讯云服务器有危险吗 浏览:798
复制文件到文件夹php 浏览:10
java注释正则表达式 浏览:858
java连接远程oracle 浏览:91
javamainargs 浏览:758
金华数据文档加密软件公司 浏览:854
内心极度担心解压的音乐 浏览:897
穿搭技巧app卡色配什么颜色 浏览:595
程序员得结石 浏览:131
查公司薪资的app叫什么 浏览:410
压缩包多个文件夹图片连续看 浏览:487
linuxmysql无法用命令启动 浏览:442
地税身份认证用什么ApP 浏览:531