A. 如何将显示器图像导入python程序
摘要 Python是一种通用的编程语言,它提供了许多图像处理库,用于向数字图像中添加图像处理功能。Python中一些最常见的图像处理库是OpenCV , Python成像库(PIL) , Scikit-图像等。
B. python图像处理初学者求助
Pillow是Python里的图像处理库(PIL:Python Image Library),提供了了广泛的文件格式支持,强大的图像处理能力,主要包括图像储存、图像显示、格式转换以及基本的图像处理操作等。
1)使用 Image 类
PIL最重要的类是 Image class, 你可以通过多种方法创建这个类的实例;你可以从文件加载图像,或者处理其他图像, 或者从 scratch 创建。
要从文件加载图像,可以使用open( )函数,在Image模块中:
1
2
>>> from PIL import Image
>>> im = Image.open("E:/photoshop/1.jpg")
加载成功后,将返回一个Image对象,可以通过使用示例属性查看文件内容:
1
2
3
>>> print(im.format, im.size, im.mode)
('JPEG', (600, 351), 'RGB')
>>>
format 这个属性标识了图像来源。如果图像不是从文件读取它的值就是None。size属性是一个二元tuple,包含width和height(宽度和高度,单位都是px)。 mode 属性定义了图像bands的数量和名称,以及像素类型和深度。常见的modes 有 “L” (luminance) 表示灰度图像, “RGB” 表示真彩色图像, and “CMYK” 表示出版图像。
如果文件打开错误,返回 IOError 错误。
只要你有了 Image 类的实例,你就可以通过类的方法处理图像。比如,下列方法可以显示图像:
1
im.show()
2)读写图像
PIL 模块支持大量图片格式。使用在 Image 模块的 open() 函数从磁盘读取文件。你不需要知道文件格式就能打开它,这个库能够根据文件内容自动确定文件格式。要保存文件,使用 Image 类的 save() 方法。保存文件的时候文件名变得重要了。除非你指定格式,否则这个库将会以文件名的扩展名作为格式保存。
加载文件,并转化为png格式:
1
2
3
4
5
6
7
8
9
10
11
12
13
"Python Image Library Test"
from PIL import Image
import os
import sys
for infile in sys.argv[1:]:
f,e = os.path.splitext(infile)
outfile = f +".png"
if infile != outfile:
try:
Image.open(infile).save(outfile)
except IOError:
print("Cannot convert", infile)
save() 方法的第二个参数可以指定文件格式。
3)创建缩略图
缩略图是网络开发或图像软件预览常用的一种基本技术,使用Python的Pillow图像库可以很方便的建立缩略图,如下:
1
2
3
4
5
6
7
# create thumbnail
size = (128,128)
for infile in glob.glob("E:/photoshop/*.jpg"):
f, ext = os.path.splitext(infile)
img = Image.open(infile)
img.thumbnail(size,Image.ANTIALIAS)
img.save(f+".thumbnail","JPEG")
上段代码对photoshop下的jpg图像文件全部创建缩略图,并保存,glob模块是一种智能化的文件名匹配技术,在批图像处理中经常会用到。
注意:Pillow库不会直接解码或者加载图像栅格数据。当你打开一个文件,只会读取文件头信息用来确定格式,颜色模式,大小等等,文件的剩余部分不会主动处理。这意味着打开一个图像文件的操作十分快速,跟图片大小和压缩方式无关。
4)图像的剪切、粘贴与合并操作
Image 类包含的方法允许你操作图像部分选区,PIL.Image.Image.crop 方法获取图像的一个子矩形选区,如:
1
2
3
4
# crop, paste and merge
im = Image.open("E:/photoshop/lena.jpg")
box = (100,100,300,300)
region = im.crop(box)
矩形选区有一个4元元组定义,分别表示左、上、右、下的坐标。这个库以左上角为坐标原点,单位是px,所以上诉代码复制了一个 200×200 pixels 的矩形选区。这个选区现在可以被处理并且粘贴到原图。
1
2
region = region.transpose(Image.ROTATE_180)
im.paste(region, box)
当你粘贴矩形选区的时候必须保证尺寸一致。此外,矩形选区不能在图像外。然而你不必保证矩形选区和原图的颜色模式一致,因为矩形选区会被自动转换颜色。
5)分离和合并颜色通道
对于多通道图像,有时候在处理时希望能够分别对每个通道处理,处理完成后重新合成多通道,在Pillow中,很简单,如下:
1
2
r,g,b = im.split()
im = Image.merge("RGB", (r,g,b))
对于split( )函数,如果是单通道的,则返回其本身,否则,返回各个通道。
6)几何变换
对图像进行几何变换是一种基本处理,在Pillow中包括resize( )和rotate( ),如用法如下:
1
2
out = im.resize((128,128))
out = im.rotate(45) # degree conter-clockwise
其中,resize( )函数的参数是一个新图像大小的元祖,而rotate( )则需要输入顺时针的旋转角度。在Pillow中,对于一些常见的旋转作了专门的定义:
1
2
3
4
5
out = im.transpose(Image.FLIP_LEFT_RIGHT)
out = im.transpose(Image.FLIP_TOP_BOTTOM)
out = im.transpose(Image.ROTATE_90)
out = im.transpose(Image.ROTATE_180)
out = im.transpose(Image.ROTATE_270)
7)颜色空间变换
在处理图像时,根据需要进行颜色空间的转换,如将彩色转换为灰度:
1
2
cmyk = im.convert("CMYK")
gray = im.convert("L")
8)图像滤波
C. python图像处理库 哪个好 知乎
1.scikit-image
scikit-image是一个开源的Python包,适用于numpy数组。它实现了用于研究,教育和工业应用的算法和实用工具。即使是那些刚接触Python生态系统的人,它也是一个相当简单直接的库。此代码是由活跃的志愿者社区编写的,具有高质量和同行评审的性质。
2.Numpy
Numpy是Python编程的核心库之一,并为数组提供支持。图像本质上是包含数据点像素的标准Numpy数组。因此,我们可以通过使用基本的NumPy操作,例如切片、掩膜和花式索引,来修改图像的像素值。可以使用skimage加载图像并使用matplotlib显示图像。
3.Scipy
scipy是Python的另一个类似Numpy的核心科学模块,可用于基本的图像操作和处理任务。特别是子模块scipy.ndimage,提供了在n维NumPy数组上操作的函数。该包目前包括线性和非线性滤波,二值形态学,B样条插值和对象测量等功能函数。
4. PIL/Pillow
PIL是Python编程语言的一个免费库,它支持打开、操作和保存许多不同的文件格式的图像。然而,随着2009年的最后一次发布,它的开发停滞不前。但幸运的是还有Pillow,一个PIL积极开发的且更容易安装的分支,它能运行在所有主要的操作系统,并支持Python3。这个库包含了基本的图像处理功能,包括点运算、使用一组内置卷积核的滤波和色彩空间的转换。
5.OpenCV-Python
OpenCV是计算机视觉应用中应用最广泛的库之一
。OpenCV-Python是OpenCV的python版API。OpenCV-Python的优点不只有高效,这源于它的内部组成是用C/C++编写的,而且它还容易编写和部署。这使得它成为执行计算密集型计算机视觉程序的一个很好的选择。
6.SimpleCV
SimpleCV也是一个用于构建计算机视觉应用程序的开源框架。有了它,你就可以访问几个高性能的计算机视觉库,如OpenCV,而且不需要先学习了解位深度、文件格式、颜色空间等。它的学习曲线大大小于OpenCV,正如它们的口号所说“计算机视觉变得简单”。
7.Mahotas
Mahotas是另一个计算机视觉和图像处理的Python库。它包括了传统的图像处理功能例如滤波和形态学操作以及更现代的计算机视觉功能用于特征计算,包括兴趣点检测和局部描述符。该接口是Python语言,适合于快速开发,但是算法是用C语言实现的,并根据速度进行了调优。Mahotas库速度快,代码简洁,甚至具有最小的依赖性。
8.SimpleITK
ITK或者Insight Segmentation and Registration
Toolkit是一个开源的跨平台系统,为开发人员提供了一套广泛的图像分析软件工具
。其中,SimpleITK是建立在ITK之上的简化层,旨在促进其在快速原型设计、教育、解释语言中的应用。SimpleITK是一个图像分析工具包,包含大量支持一般过滤操作、图像分割和匹配的组件。SimpleITK本身是用C++写的,但是对于包括Python以内的大部分编程语言都是可用的。
9.pgmagick
pgmagick是GraphicsMagick库的一个基于python的包装。GraphicsMagick图像处理系统有时被称为图像处理的瑞士军刀。它提供了一个具有强大且高效的工具和库集合,支持以88种主要格式读取、写入和操作图像。
10.Pycairo
Pycairo是图像处理库cairo的一组Python捆绑。Cairo是一个用于绘制矢量图形的2D图形库。矢量图形很有趣,因为它们在调整大小或转换时不会失去清晰度。Pycairo是cairo的一组绑定,可用于从Python调用cairo命令。
D. 图像处理的Python问题,怎么解决
imtools.py里面也要有numpy 的引用才对
def histeq(im,nbr_bins=256):
"""对一幅灰度图像进行直方图均衡化"""
#计算图像的直方图
imhist,bins = histogram(im.flatten(),nbr_bins,normed=True)
cdf = imhist.cumsum() #累计分布函数
cdf = 255 * cdf / cdf[-1] #归一化
#使用累计分布函数的线性插值,计算新的像素
im2 = interp(im.flatten(),bins[:-1],cdf)
return im2.reshape(im.shape),cdf
以上代码我定义在imtools.py文件里并且放在了python2.7里
然后我在num.py里引用他
Python code?
1
2
3
4
5
6
7
8
9
10
from PIL import Image
from pylab import *
from numpy import *
import imtools
im= array(Image.open('E:\\daima\\pydaima\\shijue\\tupian1\\gang2.jpg').convert('L'))
im2,cdf =imtools.histeq(im)
出现以下错误:
Traceback (most recent call last):
File "<pyshell#56>", line 1, in <mole>
a=imtools.histeq(im)
File "E:\daima\pydaima\shijue\imtools.py", line 32, in histeq
NameError: global name 'histogram' is not defined
E. Python如何图像识别
提取待检索电影的每一帧图像的局部敏感哈希 (Locality Sensitive Hashing; LSH) 特征, 并保存下来, 不妨称为库 (gallery). LSH 特征可以用整型来表示, 一般是6...
2.来了一张查询图像 (query), 也计算它的 LSH 特征. 然后与预先保存下来的库中的每个 LSH 特征都计算 Hamming 距离, 返回库中与查询图像 LSH 特征距离最小 (或距离小于指定阈值) ...
F. 遥感数字图像定量反演的方法
遥感数字图像可以用Google earth engine python API来实现定量反演。
用基于GEE的pythonAPI,主要实现以下内容:
站点数据和遥感影像匹配。
利用机器学习/深度学习模型进行匹配数据的训练。
将训练的模型用于GEE上的影像数据,实现参数反演结果成图。
提取影像的metedata,作为模型的输入数据。
注意,直接采用img.get( )得到的是computerobject这种类型的结果,无法在机器学习模型中输入和计算,应加上.getInfo()。
总结如下:
反演,在人工智能领域又称为人工智能反演(inversion with artificial intelligence),是指能够模仿人类智能的计算机程序系统即人工智能专家系统,它具有学习和推理的功能。例如模拟退火最优化系统、人工神经网络系统等。
在反问题求解过程中应用人工智能的方法技术,引导局部或全局寻优,这种反演方法称为人工智能反演技术。
G. python可以用来处理图像吗
可以的,
PythonWare公司提供了免费的Python图像处理工具包PIL(Python Image Library),该软件包提供了基本的图像处理功能,如:
改变图像大小,旋转图像,图像格式转换,色场空间转换,图像增强,直方图处理,插值和滤波等等。虽然在这个软件包上要实现类似MATLAB中的复杂的图像处理算法并不太适合,但是Python的快速开发能力以及面向对象等等诸多特点使得它非常适合用来进行原型开发。
在PIL中,任何一副图像都是用一个Image对象表示,而这个类由和它同名的模块导出,因此,最简单的形式是这样的:
import Image img = Image.open(“dip.jpg”)
注意:第一行的Image是模块名;第二行的img是一个Image对象;
Image类是在Image模块中定义的。关于Image模块和Image类,切记不要混淆了。现在,我们就可以对img进行各种操作了,所有对img的
操作最终都会反映到到dip.img图像上。
PIL提供了丰富的功能模块:Image,ImageDraw,ImageEnhance,ImageFile等等。最常用到的模块是
Image,ImageDraw,ImageEnhance这三个模块。下面我对此分别做一介绍。关于其它模块的使用请参见说明文档.有关PIL软件包和
相关的说明文档可在PythonWare的站点www.Pythonware.com上获得。
Image模块:
Image模块是PIL最基本的模块,其中导出了Image类,一个Image类实例对象就对应了一副图像。同时,Image模块还提供了很多有用的函数。
(1)打开一文件:
import Image img = Image.open(“dip.jpg”)
这将返回一个Image类实例对象,后面的所有的操作都是在img上完成的。
(2)调整文件大小:
import Image img = Image.open("img.jpg") new_img = img.resize
((128,128),Image.BILINEAR) new_img.save("new_img.jpg")
原来的图像大小是256x256,现在,保存的new_img.jpg的大小是128x128。
就是这么简单,需要说明的是Image.BILINEAR指定采用双线性法对像素点插值。
在批处理或者简单的Python图像处理任务中,采用Python和PIL(Python Image Library)的组合来完成图像处理任务是一个很不错的选择。设想有一个需要对某个文件夹下的所有图像将对比度提高2倍的任务。用Python来做将是十分简单的。当然,我也不得不承认Python在图像处理方面的功能还比较弱,显然还不适合用来进行滤波、特征提取等等一些更为复杂的应用。我个人的观点是,当你要实现这些“高级”的算法的时候,好吧,把它交给MATLAB去完成。但是,如果你面对的只是一个通常的不要求很复杂算法的图像处理任务,那么,Python图像处理应该才是你的最佳搭档。
H. python处理图片数据
目录
1.机器是如何存储图像的?
2.在Python中读取图像数据
3.从图像数据中提取特征的方法#1:灰度像素值特征
4.从图像数据中提取特征的方法#2:通道的平均像素值
5.从图像数据中提取特征的方法#3:提取边缘
是一张数字8的图像,仔细观察就会发现,图像是由小方格组成的。这些小方格被称为像素。
但是要注意,人们是以视觉的形式观察图像的,可以轻松区分边缘和颜色,从而识别图片中的内容。然而机器很难做到这一点,它们以数字的形式存储图像。请看下图:
机器以数字矩阵的形式储存图像,矩阵大小取决于任意给定图像的像素数。
假设图像的尺寸为180 x 200或n x m,这些尺寸基本上是图像中的像素数(高x宽)。
这些数字或像素值表示像素的强度或亮度,较小的数字(接近0)表示黑色,较大的数字(接近255)表示白色。通过分析下面的图像,读者就会弄懂到目前为止所学到的知识。
下图的尺寸为22 x 16,读者可以通过计算像素数来验证:
图片源于机器学习应用课程
刚才讨论的例子是黑白图像,如果是生活中更为普遍的彩色呢?你是否认为彩色图像也以2D矩阵的形式存储?
彩色图像通常由多种颜色组成,几乎所有颜色都可以从三原色(红色,绿色和蓝色)生成。
因此,如果是彩色图像,则要用到三个矩阵(或通道)——红、绿、蓝。每个矩阵值介于0到255之间,表示该像素的颜色强度。观察下图来理解这个概念:
图片源于机器学习应用课程
左边有一幅彩色图像(人类可以看到),而在右边,红绿蓝三个颜色通道对应三个矩阵,叠加三个通道以形成彩色图像。
请注意,由于原始矩阵非常大且可视化难度较高,因此这些不是给定图像的原始像素值。此外,还可以用各种其他的格式来存储图像,RGB是最受欢迎的,所以笔者放到这里。读者可以在此处阅读更多关于其他流行格式的信息。
用Python读取图像数据
下面开始将理论知识付诸实践。启动Python并加载图像以观察矩阵:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from skimage.io import imread, imshow
image = imread('image_8_original.png', as_gray=True)
imshow(image)
#checking image shape
image.shape, image
(28,28)
矩阵有784个值,而且这只是整个矩阵的一小部分。用一个LIVE编码窗口,不用离开本文就可以运行上述所有代码并查看结果。
下面来深入探讨本文背后的核心思想,并探索使用像素值作为特征的各种方法。
方法#1:灰度像素值特征
从图像创建特征最简单的方法就是将原始的像素用作单独的特征。
考虑相同的示例,就是上面那张图(数字‘8’),图像尺寸为28×28。
能猜出这张图片的特征数量吗?答案是与像素数相同!也就是有784个。
那么问题来了,如何安排这784个像素作为特征呢?这样,可以简单地依次追加每个像素值从而生成特征向量。如下图所示:
下面来用Python绘制图像,并为该图像创建这些特征:
image = imread('puppy.jpeg', as_gray=True)
image.shape, imshow(image)
(650,450)
该图像尺寸为650×450,因此特征数量应为297,000。可以使用NumPy中的reshape函数生成,在其中指定图像尺寸:
#pixel features
features = np.reshape(image, (660*450))
features.shape, features
(297000,)
array([0.96470588, 0.96470588, 0.96470588, ..., 0.96862745, 0.96470588,
0.96470588])
这里就得到了特征——长度为297,000的一维数组。很简单吧?在实时编码窗口中尝试使用此方法提取特征。
但结果只有一个通道或灰度图像,对于彩色图像是否也可以这样呢?来看看吧!
方法#2:通道的平均像素值
在读取上一节中的图像时,设置了参数‘as_gray = True’,因此在图像中只有一个通道,可以轻松附加像素值。下面删除参数并再次加载图像:
image = imread('puppy.jpeg')
image.shape
(660, 450, 3)
这次,图像尺寸为(660,450,3),其中3为通道数量。可以像之前一样继续创建特征,此时特征数量将是660*450*3 = 891,000。
或者,可以使用另一种方法:
生成一个新矩阵,这个矩阵具有来自三个通道的像素平均值,而不是分别使用三个通道中的像素值。
下图可以让读者更清楚地了解这一思路:
这样一来,特征数量保持不变,并且还能考虑来自图像全部三个通道的像素值。
image = imread('puppy.jpeg')
feature_matrix = np.zeros((660,450))
feature_matrix.shape
(660, 450)
现有一个尺寸为(660×450×3)的三维矩阵,其中660为高度,450为宽度,3是通道数。为获取平均像素值,要使用for循环:
for i in range(0,iimage.shape[0]):
for j in range(0,image.shape[1]):
feature_matrix[i][j] = ((int(image[i,j,0]) + int(image[i,j,1]) + int(image[i,j,2]))/3)
新矩阵具有相同的高度和宽度,但只有一个通道。现在,可以按照与上一节相同的步骤进行操作。依次附加像素值以获得一维数组:
features = np.reshape(feature_matrix, (660*450))
features.shape
(297000,)
方法#3:提取边缘特征
请思考,在下图中,如何识别其中存在的对象:
识别出图中的对象很容易——狗、汽车、还有猫,那么在区分的时候要考虑哪些特征呢?形状是一个重要因素,其次是颜色,或者大小。如果机器也能像这样识别形状会怎么样?
类似的想法是提取边缘作为特征并将其作为模型的输入。稍微考虑一下,要如何识别图像中的边缘呢?边缘一般都是颜色急剧变化的地方,请看下图:
笔者在这里突出了两个边缘。这两处边缘之所以可以被识别是因为在图中,可以分别看到颜色从白色变为棕色,或者由棕色变为黑色。如你所知,图像以数字的形式表示,因此就要寻找哪些像素值发生了剧烈变化。
假设图像矩阵如下:
图片源于机器学习应用课程
该像素两侧的像素值差异很大,于是可以得出结论,该像素处存在显着的转变,因此其为边缘。现在问题又来了,是否一定要手动执行此步骤?
当然不!有各种可用于突出显示图像边缘的内核,刚才讨论的方法也可以使用Prewitt内核(在x方向上)来实现。以下是Prewitt内核:
获取所选像素周围的值,并将其与所选内核(Prewitt内核)相乘,然后可以添加结果值以获得最终值。由于±1已经分别存在于两列之中,因此添加这些值就相当于获取差异。
还有其他各种内核,下面是四种最常用的内核:
图片源于机器学习应用课程
现在回到笔记本,为同一图像生成边缘特征:
#importing the required libraries
import numpy as np
from skimage.io import imread, imshow
from skimage.filters import prewitt_h,prewitt_v
import matplotlib.pyplot as plt
%matplotlib inline
#reading the image
image = imread('puppy.jpeg',as_gray=True)
#calculating horizontal edges using prewitt kernel
edges_prewitt_horizontal = prewitt_h(image)
#calculating vertical edges using prewitt kernel
edges_prewitt_vertical = prewitt_v(image)
imshow(edges_prewitt_vertical, cmap='gray')