一、人工蜂群算法的介绍
人工蜂群算法(Artificial Bee Colony, ABC)是由Karaboga于2005年提出的一种新颖的基于群智能的全局优化算法,其直观背景来源于蜂群的采蜜行为,蜜蜂根据各自的分工进行不同的活动,并实现蜂群信息的共享和交流,从而找到问题的最优解。人工蜂群算法属于群智能算法的一种。
二、人工蜂群算法的原理
1、原理
标准的ABC算法通过模拟实际蜜蜂的采蜜机制将人工蜂群分为3类: 采蜜蜂、观察蜂和侦察蜂。整个蜂群的目标是寻找花蜜量最大的蜜源。在标准的ABC算法中,采蜜蜂利用先前的蜜源信息寻找新的蜜源并与观察蜂分享蜜源信息;观察蜂在蜂房中等待并依据采蜜蜂分享的信息寻找新的蜜源;侦查蜂的任务是寻找一个新的有价值的蜜源,它们在蜂房附近随机地寻找蜜源。
假设问题的解空间是。
代码:
[cpp]view plain
#include<iostream>
#include<time.h>
#include<stdlib.h>
#include<cmath>
#include<fstream>
#include<iomanip>
usingnamespacestd;
constintNP=40;//种群的规模,采蜜蜂+观察蜂
constintFoodNumber=NP/2;//食物的数量,为采蜜蜂的数量
constintlimit=20;//限度,超过这个限度没有更新采蜜蜂变成侦查蜂
constintmaxCycle=10000;//停止条件
/*****函数的特定参数*****/
constintD=2;//函数的参数个数
constdoublelb=-100;//函数的下界
constdoubleub=100;//函数的上界
doubleresult[maxCycle]={0};
/*****种群的定义****/
structBeeGroup
{
doublecode[D];//函数的维数
doubletrueFit;//记录真实的最小值
doublefitness;
doublerfitness;//相对适应值比例
inttrail;//表示实验的次数,用于与limit作比较
}Bee[FoodNumber];
BeeGroupNectarSource[FoodNumber];//蜜源,注意:一切的修改都是针对蜜源而言的
BeeGroupEmployedBee[FoodNumber];//采蜜蜂
BeeGroupOnLooker[FoodNumber];//观察蜂
BeeGroupBestSource;//记录最好蜜源
/*****函数的声明*****/
doublerandom(double,double);//产生区间上的随机数
voidinitilize();//初始化参数
doublecalculationTruefit(BeeGroup);//计算真实的函数值
doublecalculationFitness(double);//计算适应值
voidCalculateProbabilities();//计算轮盘赌的概率
voidevalueSource();//评价蜜源
voidsendEmployedBees();
voidsendOnlookerBees();
voidsendScoutBees();
voidMemorizeBestSource();
/*******主函数*******/
intmain()
{
ofstreamoutput;
output.open("dataABC.txt");
srand((unsigned)time(NULL));
initilize();//初始化
MemorizeBestSource();//保存最好的蜜源
//主要的循环
intgen=0;
while(gen<maxCycle)
{
sendEmployedBees();
CalculateProbabilities();
sendOnlookerBees();
MemorizeBestSource();
sendScoutBees();
MemorizeBestSource();
output<<setprecision(30)<<BestSource.trueFit<<endl;
gen++;
}
output.close();
cout<<"运行结束!!"<<endl;
return0;
}
/*****函数的实现****/
doublerandom(doublestart,doubleend)//随机产生区间内的随机数
{
returnstart+(end-start)*rand()/(RAND_MAX+1.0);
}
voidinitilize()//初始化参数
{
inti,j;
for(i=0;i<FoodNumber;i++)
{
for(j=0;j<D;j++)
{
NectarSource[i].code[j]=random(lb,ub);
EmployedBee[i].code[j]=NectarSource[i].code[j];
OnLooker[i].code[j]=NectarSource[i].code[j];
BestSource.code[j]=NectarSource[0].code[j];
}
/****蜜源的初始化*****/
NectarSource[i].trueFit=calculationTruefit(NectarSource[i]);
NectarSource[i].fitness=calculationFitness(NectarSource[i].trueFit);
NectarSource[i].rfitness=0;
NectarSource[i].trail=0;
/****采蜜蜂的初始化*****/
EmployedBee[i].trueFit=NectarSource[i].trueFit;
EmployedBee[i].fitness=NectarSource[i].fitness;
EmployedBee[i].rfitness=NectarSource[i].rfitness;
EmployedBee[i].trail=NectarSource[i].trail;
/****观察蜂的初始化****/
OnLooker[i].trueFit=NectarSource[i].trueFit;
OnLooker[i].fitness=NectarSource[i].fitness;
OnLooker[i].rfitness=NectarSource[i].rfitness;
OnLooker[i].trail=NectarSource[i].trail;
}
/*****最优蜜源的初始化*****/
BestSource.trueFit=NectarSource[0].trueFit;
BestSource.fitness=NectarSource[0].fitness;
BestSource.rfitness=NectarSource[0].rfitness;
BestSource.trail=NectarSource[0].trail;
}
doublecalculationTruefit(BeeGroupbee)//计算真实的函数值
{
doubletruefit=0;
/******测试函数1******/
truefit=0.5+(sin(sqrt(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))*sin(sqrt(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))-0.5)
/((1+0.001*(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1]))*(1+0.001*(bee.code[0]*bee.code[0]+bee.code[1]*bee.code[1])));
returntruefit;
}
doublecalculationFitness(doubletruefit)//计算适应值
{
doublefitnessResult=0;
if(truefit>=0)
{
fitnessResult=1/(truefit+1);
}else
{
fitnessResult=1+abs(truefit);
}
returnfitnessResult;
}
voidsendEmployedBees()//修改采蜜蜂的函数
{
inti,j,k;
intparam2change;//需要改变的维数
doubleRij;//[-1,1]之间的随机数
for(i=0;i<FoodNumber;i++)
{
param2change=(int)random(0,D);//随机选取需要改变的维数
/******选取不等于i的k********/
while(1)
{
k=(int)random(0,FoodNumber);
if(k!=i)
{
break;
}
}
for(j=0;j<D;j++)
{
EmployedBee[i].code[j]=NectarSource[i].code[j];
}
/*******采蜜蜂去更新信息*******/
Rij=random(-1,1);
EmployedBee[i].code[param2change]=NectarSource[i].code[param2change]+Rij*(NectarSource[i].code[param2change]-NectarSource[k].code[param2change]);
/*******判断是否越界********/
if(EmployedBee[i].code[param2change]>ub)
{
EmployedBee[i].code[param2change]=ub;
}
if(EmployedBee[i].code[param2change]<lb)
{
EmployedBee[i].code[param2change]=lb;
}
EmployedBee[i].trueFit=calculationTruefit(EmployedBee[i]);
EmployedBee[i].fitness=calculationFitness(EmployedBee[i].trueFit);
/******贪婪选择策略*******/
if(EmployedBee[i].trueFit<NectarSource[i].trueFit)
{
for(j=0;j<D;j++)
{
NectarSource[i].code[j]=EmployedBee[i].code[j];
}
NectarSource[i].trail=0;
NectarSource[i].trueFit=EmployedBee[i].trueFit;
NectarSource[i].fitness=EmployedBee[i].fitness;
}else
{
NectarSource[i].trail++;
}
}
}
voidCalculateProbabilities()//计算轮盘赌的选择概率
{
inti;
doublemaxfit;
maxfit=NectarSource[0].fitness;
for(i=1;i<FoodNumber;i++)
{
if(NectarSource[i].fitness>maxfit)
maxfit=NectarSource[i].fitness;
}
for(i=0;i<FoodNumber;i++)
{
NectarSource[i].rfitness=(0.9*(NectarSource[i].fitness/maxfit))+0.1;
}
}
voidsendOnlookerBees()//采蜜蜂与观察蜂交流信息,观察蜂更改信息
{
inti,j,t,k;
doubleR_choosed;//被选中的概率
intparam2change;//需要被改变的维数
doubleRij;//[-1,1]之间的随机数
i=0;
t=0;
while(t<FoodNumber)
{
R_choosed=random(0,1);
if(R_choosed<NectarSource[i].rfitness)//根据被选择的概率选择
{
t++;
param2change=(int)random(0,D);
/******选取不等于i的k********/
while(1)
{
k=(int)random(0,FoodNumber);
if(k!=i)
{
break;
}
}
for(j=0;j<D;j++)
{
OnLooker[i].code[j]=NectarSource[i].code[j];
}
/****更新******/
Rij=random(-1,1);
OnLooker[i].code[param2change]=NectarSource[i].code[param2change]+Rij*(NectarSource[i].code[param2change]-NectarSource[k].code[param2change]);
/*******判断是否越界*******/
if(OnLooker[i].code[param2change]<lb)
{
OnLooker[i].code[param2change]=lb;
}
if(OnLooker[i].code[param2change]>ub)
{
OnLooker[i].code[param2change]=ub;
}
OnLooker[i].trueFit=calculationTruefit(OnLooker[i]);
OnLooker[i].fitness=calculationFitness(OnLooker[i].trueFit);
/****贪婪选择策略******/
if(OnLooker[i].trueFit<NectarSource[i].trueFit)
{
for(j=0;j<D;j++)
{
NectarSource[i].code[j]=OnLooker[i].code[j];
}
NectarSource[i].trail=0;
NectarSource[i].trueFit=OnLooker[i].trueFit;
NectarSource[i].fitness=OnLooker[i].fitness;
}else
{
NectarSource[i].trail++;
}
}
i++;
if(i==FoodNumber)
{
i=0;
}
}
}
❷ 用java解决tsp问题用什么算法最简单
package noah;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
public class TxTsp {
private int cityNum; // 城市数量
private int[][] distance; // 距离矩阵
private int[] colable;//代表列,也表示是否走过,走过置0
private int[] row;//代表行,选过置0
public TxTsp(int n) {
cityNum = n;
}
private void init(String filename) throws IOException {
// 读取数据
int[] x;
int[] y;
String strbuff;
BufferedReader data = new BufferedReader(new InputStreamReader(
new FileInputStream(filename)));
distance = new int[cityNum][cityNum];
x = new int[cityNum];
y = new int[cityNum];
for (int i = 0; i < cityNum; i++) {
// 读取一行数据,数据格式1 6734 1453
strbuff = data.readLine();
// 字符分割
String[] strcol = strbuff.split(" ");
x[i] = Integer.valueOf(strcol[1]);// x坐标
y[i] = Integer.valueOf(strcol[2]);// y坐标
}
data.close();
// 计算距离矩阵
// ,针对具体问题,距离计算方法也不一样,此处用的是att48作为案例,它有48个城市,距离计算方法为伪欧氏距离,最优值为10628
for (int i = 0; i < cityNum - 1; i++) {
distance[i][i] = 0; // 对角线为0
for (int j = i + 1; j < cityNum; j++) {
double rij = Math
.sqrt(((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j])
* (y[i] - y[j])) / 10.0);
// 四舍五入,取整
int tij = (int) Math.round(rij);
if (tij < rij) {
distance[i][j] = tij + 1;
distance[j][i] = distance[i][j];
} else {
distance[i][j] = tij;
distance[j][i] = distance[i][j];
}
}
}
distance[cityNum - 1][cityNum - 1] = 0;
colable = new int[cityNum];
colable[0] = 0;
for (int i = 1; i < cityNum; i++) {
colable[i] = 1;
}
row = new int[cityNum];
for (int i = 0; i < cityNum; i++) {
row[i] = 1;
}
}
public void solve(){
int[] temp = new int[cityNum];
String path="0";
int s=0;//计算距离
int i=0;//当前节点
int j=0;//下一个节点
//默认从0开始
while(row[i]==1){
//复制一行
for (int k = 0; k < cityNum; k++) {
temp[k] = distance[i][k];
//System.out.print(temp[k]+" ");
}
//System.out.println();
//选择下一个节点,要求不是已经走过,并且与i不同
j = selectmin(temp);
//找出下一节点
row[i] = 0;//行置0,表示已经选过
colable[j] = 0;//列0,表示已经走过
path+="-->" + j;
//System.out.println(i + "-->" + j);
//System.out.println(distance[i][j]);
s = s + distance[i][j];
i = j;//当前节点指向下一节点
}
System.out.println("路径:" + path);
System.out.println("总距离为:" + s);
}
public int selectmin(int[] p){
int j = 0, m = p[0], k = 0;
//寻找第一个可用节点,注意最后一次寻找,没有可用节点
while (colable[j] == 0) {
j++;
//System.out.print(j+" ");
if(j>=cityNum){
//没有可用节点,说明已结束,最后一次为 *-->0
m = p[0];
break;
//或者直接return 0;
}
else{
m = p[j];
}
}
//从可用节点J开始往后扫描,找出距离最小节点
for (; j < cityNum; j++) {
if (colable[j] == 1) {
if (m >= p[j]) {
m = p[j];
k = j;
}
}
}
return k;
}
public void printinit() {
System.out.println("print begin....");
for (int i = 0; i < cityNum; i++) {
for (int j = 0; j < cityNum; j++) {
System.out.print(distance[i][j] + " ");
}
System.out.println();
}
System.out.println("print end....");
}
public static void main(String[] args) throws IOException {
System.out.println("Start....");
TxTsp ts = new TxTsp(48);
ts.init("c://data.txt");
//ts.printinit();
ts.solve();
}
}
❸ java中错误:没有为类型 Tsp 定义方法 printBestRoute(),如何改,是在遗传算法实现中出现的问题
那就再定义下这个方法就好了吧
❹ 百度上提问:Java上怎样读取txt文件里的数据为一个多行两列的数组,每一个数据由逗号隔开
public voidinit(String filename) throws FileNotFoundException, IOException{
//读取数据
double[] x;
double[] y;
int num;
String strbuff;
BufferedReader tspdata = newBufferedReader(new InputStreamReader(new FileInputStream(filename)));
strbuff = tspdata.readLine();
int num =Integer.valueOf(strbuff);
// System.out.println(Integer.valueOf(strbuff));
x = new double[num];
y = new double[num];
for (int citys = 0; citys <num; citys++) {
strbuff = tspdata.readLine();
String[] strcol =strbuff.split(",");
x[citys] = Integer.valueOf(strcol[1]);
y[citys] =Integer.valueOf(strcol[2]);
}
}
❺ Java中的一些问题
1.定义变量时至少应指出变量名和类型吗?
答:必须给出名称和类型。
2.定义变量时没有给出初值,该变量可能是无意义的值吗??
答:类的成员变量会给出默认值,基本数据类型会是0,对象是null。局部变量不可以没有初始值
3.定义变量同一个类型,多个变量可用逗号分隔吗?
答:可以。
4.定义变量时必须要给变量初始化吗??
答:成员变量可以不必初始化,局部变量一定要初始化。
5.定义变量而没初始化时,该变量与默认值吗??
答:成员变量有初始值,局部变量没有
6.字符型变量的默认值为换行符吗?
答:是
7.布尔型变量的默认值为真吗?
答:false
8.变量的默认值是可以改变的吗??
答:可以改变。
❻ java中,主类创建的对象,如何能在其他类中调用急急急!!
主类中创建的public对象,你可以在其他类中通过主类对象名.public对象名访问,如果是private的话无法访问,只有你在主类中写public方法,然后通过方法调用。
❼ 菜鸟在Java 的tsp问题插入一个节点遇到了一个问题
while(temp.next!=null){
if(temp.next.p.distanceTo(p)<minDis){
nearestNode = temp;
}
temp = temp.next;
}
如果我没看错的话 temp.next!=null 这句代码已经执行了指针指向下一个了。当然有可能是我搞错了。
问题解决了吗?采纳一下我的答案吧。谢谢。
❽ 用java做一个java登录监控程序,监控当前有多少个session有效,急~~~~
要监控session是否有效,就要变相的拿到session的主动权
比如你可以在页面写一个循环请求的ajax(这个循环需要是一个同步的请求)
如果用户把页面关掉了,那么这个ajax所请求的方法也就终止了
你要做的就是在一定的时间内去检测目标session的最后一次更新时间
❾ 求java上旅游路线的规划算法
这个属于TSP(旅行商)问题,搜索 旅行商问题 可以找到相关解法的介绍。
❿ 用java解决tsp问题用什么算法最简单
用java解决tsp
package noah;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
public class TxTsp {
private int cityNum; // 城市数量
private int[][] distance; // 距离矩阵
private int[] colable;//代表列,也表示是否走过,走过置0
private int[] row;//代表行,选过置0
public TxTsp(int n) {
cityNum = n;
}
private void init(String filename) throws IOException {
// 读取数据
int[] x;
int[] y;
String strbuff;
BufferedReader data = new BufferedReader(new InputStreamReader(
new FileInputStream(filename)));
distance = new int[cityNum][cityNum];
x = new int[cityNum];
y = new int[cityNum];
for (int i = 0; i < cityNum; i++) {
// 读取一行数据,数据格式1 6734 1453
strbuff = data.readLine();
// 字符分割
String[] strcol = strbuff.split(" ");
x[i] = Integer.valueOf(strcol[1]);// x坐标
y[i] = Integer.valueOf(strcol[2]);// y坐标
}
data.close();
// 计算距离矩阵
// ,针对具体问题,距离计算方法也不一样,此处用的是att48作为案例,它有48个城市,距离计算方法为伪欧氏距离,最优值为10628
for (int i = 0; i < cityNum - 1; i++) {
distance[i][i] = 0; // 对角线为0
for (int j = i + 1; j < cityNum; j++) {
double rij = Math
.sqrt(((x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j])
* (y[i] - y[j])) / 10.0);
// 四舍五入,取整
int tij = (int) Math.round(rij);
if (tij < rij) {
distance[i][j] = tij + 1;
distance[j][i] = distance[i][j];
} else {
distance[i][j] = tij;
distance[j][i] = distance[i][j];
}
}
}
distance[cityNum - 1][cityNum - 1] = 0;
colable = new int[cityNum];
colable[0] = 0;
for (int i = 1; i < cityNum; i++) {
colable[i] = 1;
}
row = new int[cityNum];
for (int i = 0; i < cityNum; i++) {
row[i] = 1;
}
}
public void solve(){
int[] temp = new int[cityNum];
String path="0";
int s=0;//计算距离
int i=0;//当前节点
int j=0;//下一个节点
//默认从0开始
while(row[i]==1){
//复制一行
for (int k = 0; k < cityNum; k++) {
temp[k] = distance[i][k];
//System.out.print(temp[k]+" ");
}
//System.out.println();
//选择下一个节点,要求不是已经走过,并且与i不同
j = selectmin(temp);
//找出下一节点
row[i] = 0;//行置0,表示已经选过
colable[j] = 0;//列0,表示已经走过
path+="-->" + j;
//System.out.println(i + "-->" + j);
//System.out.println(distance[i][j]);
s = s + distance[i][j];
i = j;//当前节点指向下一节点
}
System.out.println("路径:" + path);
System.out.println("总距离为:" + s);
}
public int selectmin(int[] p){
int j = 0, m = p[0], k = 0;
//寻找第一个可用节点,注意最后一次寻找,没有可用节点
while (colable[j] == 0) {
j++;
//System.out.print(j+" ");
if(j>=cityNum){
//没有可用节点,说明已结束,最后一次为 *-->0
m = p[0];
break;
//或者直接return 0;
}
else{
m = p[j];
}
}
//从可用节点J开始往后扫描,找出距离最小节点
for (; j < cityNum; j++) {
if (colable[j] == 1) {
if (m >= p[j]) {
m = p[j];
k = j;
}
}
}
return k;
}
public void printinit() {
System.out.println("print begin....");
for (int i = 0; i < cityNum; i++) {
for (int j = 0; j < cityNum; j++) {
System.out.print(distance[i][j] + " ");
}
System.out.println();
}
System.out.println("print end....");
}
public static void main(String[] args) throws IOException {
System.out.println("Start....");
TxTsp ts = new TxTsp(48);
ts.init("c://data.txt");
//ts.printinit();
ts.solve();
}
}