Ⅰ python opencv中imshow输出图像太大,如何调整输出尺寸
通过resize重置图片尺寸
参数:图片,输出图片尺寸(一般我不用这个,我传None),宽的比例,高的比例
例子:将图片img,缩小一半显示,那么宽高为原尺寸的0.5倍
img = cv2.resize(img,None,fx=0.5,fy=0.5)
设置完尺寸后再显示
cv2.imshow('img',img)
cv2.waitKey(0)
.......
希望我的回答对你有帮助!
Ⅱ Python的各种imread函数在实现方式和读取速度上有何区别
1. PIL.Image.open
代码在这里:Pillow/Image.py at 3.1.x · python-pillow/Pillow · GitHub
open() 函数打开图像,但并不读入,直到有操作发生。
具体的读取操作是在 ImageFile.py 写的。大体流程是先检测文件类型,整块地读入文件内容,然后调用解码器解码,做了很多优化,效率应该还是很高的。
2. scipy.ndimage.imread
代码在这里:scipy/io.py at v0.17.1 · scipy/scipy · GitHub
imread 调用 scipy.misc.pilutil.imread。从名字就能看出来其实调用的还是 Pillow。
根据 pilutil 代码:scipy/pilutil.py at v0.17.1 · scipy/scipy · GitHub
确实是调用 pil.image.open(),然后返回一个 fromimage()。
3. scipy.misc.imread
misc 的 __init__.py 在这里:scipy/__init__.py at v0.17.1 · scipy/scipy · GitHub
调用的还是 pilutil 中的 imread
相关代码如下
try:
from .pilutil import *
from . import pilutil
__all__ += pilutil.__all__
del pilutil
except ImportError:
pass
也算是学了一招,从 pilutil 导入其所有函数添加到当前空间,然后又删除了 pilutil 消除影响。
4. skimage.io.imread
代码在这里:scikit-image/_io.py at master · scikit-image/scikit-image · GitHub
是通过插件 plugin 来读入不同的文件,而且会试用几个不同的 plugins 来找到合适的。
使用 call_plugin 来调用,代码在这里:scikit-image/manage_plugins.py at master · scikit-image/scikit-image · GitHub
可以根据如下代码查看插件调用的优先级
# For each plugin type, default to the first available plugin as defined by
# the following preferences.
preferred_plugins = {
# Default plugins for all types (overridden by specific types below).
'all': ['pil', 'matplotlib', 'qt', 'freeimage'],
'imshow': ['matplotlib'],
'imshow_collection': ['matplotlib']
}
plugins 的源代码在这里:scikit-image/skimage/io/_plugins at master · scikit-image/scikit-image · GitHub。可以看到 pil 的 imread,是用 open 打开图像之后,再转换成 ndarray。
5. cv2.imread
这里是调用的 CV::imread(),代码在这里:opencv/loadsave.cpp at master · opencv/opencv · GitHub。一般来说 C\C++ 的实现,应该比 python 速度快一点。
6. matplotlib.image.imread
matplotlib 的文档里面说,matplotlib 原生只可以读取 PNG 文件,有 PIL 的时候,可以读取其他类型的文件。如果使用 URL 打开在线图像文件,需要符合 PIL 的文档要求。
matplotlib.image.imread 的代码在这里:matplotlib/image.py at master · matplotlib/matplotlib · GitHub。matplotlib 的原生 PNG 读取和写入,是用 C 实现的,代码在这里:matplotlib/_png.cpp at master · matplotlib/matplotlib · GitHub。
matplotlib 是先用 pil 的 open 打开图像,如果格式是 png,就用原生方法打开。相关代码如下:
handlers = {'png': _png.read_png, }
if format is None:
if cbook.is_string_like(fname):
parsed = urlparse(fname)
# If the string is a URL, assume png
if len(parsed.scheme) > 1:
ext = 'png'
else:
basename, ext = os.path.splitext(fname)
ext = ext.lower()[1:]
elif hasattr(fname, 'name'):
basename, ext = os.path.splitext(fname.name)
ext = ext.lower()[1:]
else:
ext = 'png'
else:
ext = format
if ext not in handlers:
im = pilread(fname)
if im is None:
raise ValueError('Only know how to handle extensions: %s; '
'with Pillow installed matplotlib can handle '
'more images' % list(six.iterkeys(handlers)))
return im
声明的处理器只有 png。如果是 png 文件,调用 _png.read_png。如果不是 png 直接使用 pilread(就是用 pil 的 Image.open 然后 pil_to_array)。
matplotlib 的源码确实比较复杂,一大部分主体是用 C 写的,改动很激进,功能更新猛烈。
Ⅲ Python实操:手把手教你用Matplotlib把数据画出来
作者:迈克尔·贝耶勒(Michael Beyeler)
如需转载请联系华章 科技
如果已安装Anaconda Python版本,就已经安装好了可以使用的 Matplotlib。否则,可能要访问官网并从中获取安装说明:
http://matplotlib.org
正如使用np作为 NumPy 的缩写,我们将使用一些标准的缩写来表示 Matplotlib 的引入:
在本书中,plt接口会被频繁使用。
让我们创建第一个绘图。
假设想要画出正弦函数sin(x)的线性图。得到函数在x坐标轴上0≤x<10内所有点的值。我们将使用 NumPy 中的 linspace 函数来在x坐标轴上创建一个从0到10的线性空间,以及100个采样点:
可以使用 NumPy 中的sin函数得到所有x点的值,并通过调用plt中的plot函数把结果画出来:
你亲自尝试了吗?发生了什么吗?有没有什么东西出现?
实际情况是,取决于你在哪里运行脚本,可能无法看到任何东西。有下面几种可能性:
1. 从.py脚本中绘图
如果从一个脚本中运行 Matplotlib,需要加上下面的这行调用:
在脚本末尾调用这个函数,你的绘图就会出现!
2. 从 IPython shell 中绘图
这实际上是交互式地执行Matplotlib最方便的方式。为了让绘图出现,需要在启动 IPython 后使用所谓的%matplotlib魔法命令。
接下来,无须每次调用plt.show()函数,所有的绘图将会自动出现。
3. 从 Jupyter Notebook 中绘图
如果你是从基于浏览器的 Jupyter Notebook 中看这段代码,需要使用同样的%matplotlib魔法命令。然而,也可以直接在notebook中嵌入图形,这会有两种输出选项:
在本书中,将会使用inline选项:
现在再次尝试一下:
上面的命令会得到下面的绘图输出结果:
如果想要把绘图保存下来留作以后使用,可以直接在 IPython 或者 Jupyter Notebook 使用下面的命令保存:
仅需要确保你使用了支持的文件后缀,比如.jpg、.png、.tif、.svg、.eps或者.pdf。
作为本章最后一个测试,让我们对外部数据集进行可视化,比如scikit-learn中的数字数据集。
为此,需要三个可视化工具:
那么开始引入这些包吧:
第一步是载入实际数据:
如果没记错的话,digits应该有两个不同的数据域:data域包含了真正的图像数据,target域包含了图像的标签。相对于相信我们的记忆,我们还是应该对digits稍加 探索 。输入它的名字,添加一个点号,然后按Tab键:digits.<TAB>,这个操作将向我们展示digits也包含了一些其他的域,比如一个名为images的域。images和data这两个域,似乎简单从形状上就可以区分。
两种情况中,第一维对应的都是数据集中的图像数量。然而,data中所有像素都在一个大的向量中排列,而images保留了各个图像8×8的空间排列。
因此,如果想要绘制出一副单独的图像,使用images将更加合适。首先,使用NumPy的数组切片从数据集中获取一幅图像:
这里是从1797个元素的数组中获取了它的第一行数据,这行数据对应的是8×8=64个像素。下面就可以使用plt中的imshow函数来绘制这幅图像:
上面的命令得到下面的输出:
此外,这里也使用cmap参数指定了一个颜色映射。默认情况下,Matplotlib 使用MATLAB默认的颜色映射jet。然而,在灰度图像的情况下,gray颜色映射更有效。
最后,可以使用plt的subplot函数绘制全部数字的样例。subplot函数与MATLAB中的函数一样,需要指定行数、列数以及当前的子绘图索引(从1开始计算)。我们将使用for 循环在数据集中迭代出前十张图像,每张图像都分配到一个单独的子绘图中。
这会得到下面的输出结果:
关于作者:Michael Beyeler,华盛顿大学神经工程和数据科学专业的博士后,主攻仿生视觉计算模型,用以为盲人植入人工视网膜(仿生眼睛),改善盲人的视觉体验。 他的工作属于神经科学、计算机工程、计算机视觉和机器学习的交叉领域。同时他也是多个开源项目的积极贡献者。
本文摘编自《机器学习:使用OpenCV和Python进行智能图像处理》,经出版方授权发布。
Ⅳ Python在调用cv2.imshow()时出现的问题
先到文末下载opencv的安装包。其实这个安装包就是一个解压缩。
我们在安装包解压的目录找到这个文件
把这个文件拷贝到python的包安装目录下面
在python的shell导入cv2模块试试,看是不是安装好了。结果提示还需要安装一个依赖包
好吧,还好之前有这个numpy的安装包,直接安装
Ⅳ Python 3.6 + opencv 3.4 中imshow 函数报错
看报错信息,应该是你的img图像数据加载错误导致img数据的width和height等于0,导致窗口显示失败。在使用imread函数加载图像文件之后一定要通过img.empty()判断一下文件加载是否正确,否则后面所有基于img做的操作都会报错。
Ⅵ 在python Image中可以用show()来显示图片,但是显示以后,下面的代码就不运行了,如何运行下面的代码
Image.show()函数是这个样子的,必须先关了图片程序才往下走。
不使用show,如imshow(BW)在 Matlab 7.0 中,二进制图像是一个逻辑类,仅包括 0 和 1 两个数值。像素 0 显示为黑色,像素 1 显示为白色。显示时,也可通过NOT(~)命令,对二进制图象进行取反,使数值 0 显示为白色;1 显示为黑色。
例如: imshow(~BW)
扩展资料:
不使用show函数来满足运行的需求:
import threading
import Image
class ThreadClass(threading.Thread):
def run(self):
im=Image.open('z.jpg')
im.show()
print (1)
t = ThreadClass()
t.start()
print (2)
a=input('End')
#===============================
图像的表示原理:
最基本的物理图像是根据矩形网格抽样原理从连续图像域中抽取二维灰度阵列(矩阵)得到的。也可以用长向量表示二维灰度矩阵,它是按列(或行)扫描灰度矩阵,把下一列(或行)的头和前一列(或行)的尾相接而成。
它们的线性可逆变换同样可以用来表示图像。图像的每一行由行程(具有同一灰度的邻近像元集合)序列所组成,因此也可以用行程长度编码(见图像编码)表示图像。
Ⅶ python plt.imshow 怎么用
用法以既步骤:
1、给出一张图片。
Ⅷ c#的窗口如何显示python imshow函数的结果
1、把python里的imshow函数的结果,发消息到电脑系统消息里面去,注:消息ID 唯一
2、C#窗口重写接收系统消息函数,收到消息后,判断 消息ID 是为一样,一样的话把内容取出来显示即可
Ⅸ 怎么用python显示一张图片
用python显示一张图片方法如下:
import matplotlib.pyplot as plt # plt 用于显示图片
import matplotlib.image as mpimg # mpimg 用于读取图片
import numpy as nplena = mpimg.imread('lena.png') # 读取和代码处于同一目录下的 lena.png# 此时 lena 就已经是一个 np.array 了,可以对它进行任意处理
lena.shape #(512, 512, 3)plt.imshow(lena) # 显示图片plt.axis('off') # 不显示坐标轴
plt.show()
Ⅹ python3中如何加载图片
答: 如下所示。
import cv2
image = cv2.imread('./example.png')
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
image = mpimg.imread('./example.png')
print image.shape
plt.imshow(image) #调用imshow函数
在这里只是说了两种方法,希望能够帮助到你。