导航:首页 > 编程语言 > python算法代码合集

python算法代码合集

发布时间:2022-09-26 06:54:51

A. 几种常用算法python实现

既然是常用算法,网上肯定有大量代码~ 但是还是建议自己打一遍,然后深入了解~抄书谁都会,但是能理解并记忆深刻,就不是每个人能都坚持做到的。

B. python scikit-learn 有什么算法

1,前言

很久不发文章,主要是Copy别人的总感觉有些不爽,所以整理些干货,希望相互学习吧。不啰嗦,进入主题吧,本文主要时说的为朴素贝叶斯分类算法。与逻辑回归,决策树一样,是较为广泛使用的有监督分类算法,简单且易于理解(号称十大数据挖掘算法中最简单的算法)。但其在处理文本分类,邮件分类,拼写纠错,中文分词,统计机器翻译等自然语言处理范畴较为广泛使用,或许主要得益于基于概率理论,本文主要为小编从理论理解到实践的过程记录。

2,公式推断

一些贝叶斯定理预习知识:我们知道当事件A和事件B独立时,P(AB)=P(A)(B),但如果事件不独立,则P(AB)=P(A)P(B|A)。为两件事件同时发生时的一般公式,即无论事件A和B是否独立。当然也可以写成P(AB)=P(B)P(A|B),表示若要两件事同事发生,则需要事件B发生后,事件A也要发生。

由上可知,P(A)P(B|A)= P(B)P(A|B)

推出P(B|A)=

其中P(B)为先验概率,P(B|A)为B的后验概率,P(A|B)为A的后验概率(在这里也为似然值),P(A)为A的先验概率(在这也为归一化常量)。

由上推导可知,其实朴素贝叶斯法就是在贝叶斯定理基础上,加上特征条件独立假设,对特定输入的X(样本,包含N个特征),求出后验概率最大值时的类标签Y(如是否为垃圾邮件),理解起来比逻辑回归要简单多,有木有,这也是本算法优点之一,当然运行起来由于得益于特征独立假设,运行速度也更快。

8. Python代码

# -*-coding: utf-8 -*-

importtime

fromsklearn import metrics

fromsklearn.naive_bayes import GaussianNB

fromsklearn.naive_bayes import MultinomialNB

fromsklearn.naive_bayes import BernoulliNB

fromsklearn.neighbors import KNeighborsClassifier

fromsklearn.linear_model import LogisticRegression

fromsklearn.ensemble import RandomForestClassifier

fromsklearn import tree

fromsklearn.ensemble import GradientBoostingClassifier

fromsklearn.svm import SVC

importnumpy as np

importurllib

# urlwith dataset

url ="-learning-databases/pima-indians-diabetes/pima-indians-diabetes.data"

#download the file

raw_data= urllib.request.urlopen(url)

#load the CSV file as a numpy matrix

dataset= np.loadtxt(raw_data, delimiter=",")

#separate the data from the target attributes

X =dataset[:,0:7]

#X=preprocessing.MinMaxScaler().fit_transform(x)

#print(X)

y =dataset[:,8]

print(" 调用scikit的朴素贝叶斯算法包GaussianNB ")

model= GaussianNB()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的朴素贝叶斯算法包MultinomialNB ")

model= MultinomialNB(alpha=1)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的朴素贝叶斯算法包BernoulliNB ")

model= BernoulliNB(alpha=1,binarize=0.0)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的KNeighborsClassifier ")

model= KNeighborsClassifier()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的LogisticRegression(penalty='l2')")

model= LogisticRegression(penalty='l2')

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的RandomForestClassifier(n_estimators=8) ")

model= RandomForestClassifier(n_estimators=8)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的tree.DecisionTreeClassifier()")

model= tree.DecisionTreeClassifier()

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的GradientBoostingClassifier(n_estimators=200) ")

model= GradientBoostingClassifier(n_estimators=200)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

print(" 调用scikit的SVC(kernel='rbf', probability=True) ")

model= SVC(kernel='rbf', probability=True)

start_time= time.time()

model.fit(X,y)

print('training took %fs!' % (time.time() - start_time))

print(model)

expected= y

predicted= model.predict(X)

print(metrics.classification_report(expected,predicted))

print(metrics.confusion_matrix(expected,predicted))

"""

# 预处理代码集锦

importpandas as pd

df=pd.DataFrame(dataset)

print(df.head(3))

print(df.describe())##描述性分析

print(df.corr())##各特征相关性分析

##计算每行每列数据的缺失值个数

defnum_missing(x):

return sum(x.isnull())

print("Missing values per column:")

print(df.apply(num_missing, axis=0)) #axis=0代表函数应用于每一列

print(" Missing values per row:")

print(df.apply(num_missing, axis=1).head()) #axis=1代表函数应用于每一行"""

C. python中有哪些简单的算法

基础加减乘除算法:
加法>>> 2 + 2;
减法>>> 2 - 2;
乘法>>> 2 * 2;
除法>>> 2 / 2。
整除运算:
第一种>>> 2 / 3 整型与整型相除,获取整数,条件是除数被除数都是整数;
第二种>>> 2 // 3 双斜杠整除算法,只获取小数点前的部分整数值。
冥运算:
例子1:>>> 2 ** 3;
例子2; >>> -2 ** 3;
例子3: >>> (-2) ** 3
以上这些运算算法够简单吧。

D. python求质数的算法

很早 的一个 函数

E. 建议收藏!10 种 Python 聚类算法完整操作示例

聚类或聚类分析是无监督学习问题。它通常被用作数据分析技术,用于发现数据中的有趣模式,例如基于其行为的客户群。有许多聚类算法可供选择,对于所有情况,没有单一的最佳聚类算法。相反,最好探索一系列聚类算法以及每种算法的不同配置。在本教程中,你将发现如何在 python 中安装和使用顶级聚类算法。完成本教程后,你将知道:

聚类分析,即聚类,是一项无监督的机器学习任务。它包括自动发现数据中的自然分组。与监督学习(类似预测建模)不同,聚类算法只解释输入数据,并在特征空间中找到自然组或群集。

群集通常是特征空间中的密度区域,其中来自域的示例(观测或数据行)比其他群集更接近群集。群集可以具有作为样本或点特征空间的中心(质心),并且可以具有边界或范围。

聚类可以作为数据分析活动提供帮助,以便了解更多关于问题域的信息,即所谓的模式发现或知识发现。例如:

聚类还可用作特征工程的类型,其中现有的和新的示例可被映射并标记为属于数据中所标识的群集之一。虽然确实存在许多特定于群集的定量措施,但是对所识别的群集的评估是主观的,并且可能需要领域专家。通常,聚类算法在人工合成数据集上与预先定义的群集进行学术比较,预计算法会发现这些群集。

有许多类型的聚类算法。许多算法在特征空间中的示例之间使用相似度或距离度量,以发现密集的观测区域。因此,在使用聚类算法之前,扩展数据通常是良好的实践。

一些聚类算法要求您指定或猜测数据中要发现的群集的数量,而另一些算法要求指定观测之间的最小距离,其中示例可以被视为“关闭”或“连接”。因此,聚类分析是一个迭代过程,在该过程中,对所识别的群集的主观评估被反馈回算法配置的改变中,直到达到期望的或适当的结果。scikit-learn 库提供了一套不同的聚类算法供选择。下面列出了10种比较流行的算法:

每个算法都提供了一种不同的方法来应对数据中发现自然组的挑战。没有最好的聚类算法,也没有简单的方法来找到最好的算法为您的数据没有使用控制实验。在本教程中,我们将回顾如何使用来自 scikit-learn 库的这10个流行的聚类算法中的每一个。这些示例将为您复制粘贴示例并在自己的数据上测试方法提供基础。我们不会深入研究算法如何工作的理论,也不会直接比较它们。让我们深入研究一下。

在本节中,我们将回顾如何在 scikit-learn 中使用10个流行的聚类算法。这包括一个拟合模型的例子和可视化结果的例子。这些示例用于将粘贴复制到您自己的项目中,并将方法应用于您自己的数据。

1.库安装

首先,让我们安装库。不要跳过此步骤,因为你需要确保安装了最新版本。你可以使用 pip Python 安装程序安装 scikit-learn 存储库,如下所示:

接下来,让我们确认已经安装了库,并且您正在使用一个现代版本。运行以下脚本以输出库版本号。

运行该示例时,您应该看到以下版本号或更高版本。

2.聚类数据集

我们将使用 make _ classification ()函数创建一个测试二分类数据集。数据集将有1000个示例,每个类有两个输入要素和一个群集。这些群集在两个维度上是可见的,因此我们可以用散点图绘制数据,并通过指定的群集对图中的点进行颜色绘制。这将有助于了解,至少在测试问题上,群集的识别能力如何。该测试问题中的群集基于多变量高斯,并非所有聚类算法都能有效地识别这些类型的群集。因此,本教程中的结果不应用作比较一般方法的基础。下面列出了创建和汇总合成聚类数据集的示例。

运行该示例将创建合成的聚类数据集,然后创建输入数据的散点图,其中点由类标签(理想化的群集)着色。我们可以清楚地看到两个不同的数据组在两个维度,并希望一个自动的聚类算法可以检测这些分组。

已知聚类着色点的合成聚类数据集的散点图接下来,我们可以开始查看应用于此数据集的聚类算法的示例。我已经做了一些最小的尝试来调整每个方法到数据集。3.亲和力传播亲和力传播包括找到一组最能概括数据的范例。

它是通过 AffinityPropagation 类实现的,要调整的主要配置是将“ 阻尼 ”设置为0.5到1,甚至可能是“首选项”。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法取得良好的结果。

数据集的散点图,具有使用亲和力传播识别的聚类

4.聚合聚类

聚合聚类涉及合并示例,直到达到所需的群集数量为止。它是层次聚类方法的更广泛类的一部分,通过 AgglomerationClustering 类实现的,主要配置是“ n _ clusters ”集,这是对数据中的群集数量的估计,例如2。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组。

使用聚集聚类识别出具有聚类的数据集的散点图

5.BIRCHBIRCH

聚类( BIRCH 是平衡迭代减少的缩写,聚类使用层次结构)包括构造一个树状结构,从中提取聚类质心。

它是通过 Birch 类实现的,主要配置是“ threshold ”和“ n _ clusters ”超参数,后者提供了群集数量的估计。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个很好的分组。

使用BIRCH聚类确定具有聚类的数据集的散点图

6.DBSCANDBSCAN

聚类(其中 DBSCAN 是基于密度的空间聚类的噪声应用程序)涉及在域中寻找高密度区域,并将其周围的特征空间区域扩展为群集。

它是通过 DBSCAN 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,尽管需要更多的调整,但是找到了合理的分组。

使用DBSCAN集群识别出具有集群的数据集的散点图

7.K均值

K-均值聚类可以是最常见的聚类算法,并涉及向群集分配示例,以尽量减少每个群集内的方差。

它是通过 K-均值类实现的,要优化的主要配置是“ n _ clusters ”超参数设置为数据中估计的群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以找到一个合理的分组,尽管每个维度中的不等等方差使得该方法不太适合该数据集。

使用K均值聚类识别出具有聚类的数据集的散点图

8.Mini-Batch

K-均值Mini-Batch K-均值是 K-均值的修改版本,它使用小批量的样本而不是整个数据集对群集质心进行更新,这可以使大数据集的更新速度更快,并且可能对统计噪声更健壮。

它是通过 MiniBatchKMeans 类实现的,要优化的主配置是“ n _ clusters ”超参数,设置为数据中估计的群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,会找到与标准 K-均值算法相当的结果。

带有最小批次K均值聚类的聚类数据集的散点图

9.均值漂移聚类

均值漂移聚类涉及到根据特征空间中的实例密度来寻找和调整质心。

它是通过 MeanShift 类实现的,主要配置是“带宽”超参数。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,可以在数据中找到一组合理的群集。

具有均值漂移聚类的聚类数据集散点图

10.OPTICSOPTICS

聚类( OPTICS 短于订购点数以标识聚类结构)是上述 DBSCAN 的修改版本。

它是通过 OPTICS 类实现的,主要配置是“ eps ”和“ min _ samples ”超参数。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我无法在此数据集上获得合理的结果。

使用OPTICS聚类确定具有聚类的数据集的散点图

11.光谱聚类

光谱聚类是一类通用的聚类方法,取自线性线性代数。

它是通过 Spectral 聚类类实现的,而主要的 Spectral 聚类是一个由聚类方法组成的通用类,取自线性线性代数。要优化的是“ n _ clusters ”超参数,用于指定数据中的估计群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,找到了合理的集群。

使用光谱聚类聚类识别出具有聚类的数据集的散点图

12.高斯混合模型

高斯混合模型总结了一个多变量概率密度函数,顾名思义就是混合了高斯概率分布。它是通过 Gaussian Mixture 类实现的,要优化的主要配置是“ n _ clusters ”超参数,用于指定数据中估计的群集数量。下面列出了完整的示例。

运行该示例符合训练数据集上的模型,并预测数据集中每个示例的群集。然后创建一个散点图,并由其指定的群集着色。在这种情况下,我们可以看到群集被完美地识别。这并不奇怪,因为数据集是作为 Gaussian 的混合生成的。

使用高斯混合聚类识别出具有聚类的数据集的散点图

在本文中,你发现了如何在 python 中安装和使用顶级聚类算法。具体来说,你学到了:

F. 求python RSA 算法加密字符串的完整源代码。

import rsa rsaPublickey = int(pubkey, 16) key = rsa.PublicKey(rsaPublickey, 65537) #创建公钥 message = str(servertime) + '\t' + str(nonce) + '\n' + str(password) #拼接明文js加密文件中得到 passwd = rsa.encrypt(message, key) #加密 passwd = binascii.b2a_hex(passwd) #将加密信息转换为16进制。 return passwd

G. python中有哪些简单的算法

首先谢谢邀请,

python中有的算法还是比较多的?

python之所以火是因为人工智能的发展,人工智能的发展离不开算法!

感觉有本书比较适合你,不过可惜的是这本书没有电子版,只有纸质的。

这本书对于算法从基本的入门到实现,循序渐进的介绍,比如里面就涵盖了数学建模的常用算法。

第 1章从数学建模到人工智能

1.1数学建模1.1.1数学建模与人工智能1.1.2数学建模中的常见问题1.2人工智能下的数学1.2.1统计量1.2.2矩阵概念及运算1.2.3概率论与数理统计1.2.4高等数学——导数、微分、不定积分、定积分

第2章 Python快速入门

2.1安装Python2.1.1Python安装步骤2.1.2IDE的选择2.2Python基本操作2.2.1第 一个小程序2.2.2注释与格式化输出2.2.3列表、元组、字典2.2.4条件语句与循环语句2.2.5break、continue、pass2.3Python高级操作2.3.1lambda2.3.2map2.3.3filter

第3章Python科学计算库NumPy

3.1NumPy简介与安装3.1.1NumPy简介3.1.2NumPy安装3.2基本操作3.2.1初识NumPy3.2.2NumPy数组类型3.2.3NumPy创建数组3.2.4索引与切片3.2.5矩阵合并与分割3.2.6矩阵运算与线性代数3.2.7NumPy的广播机制3.2.8NumPy统计函数3.2.9NumPy排序、搜索3.2.10NumPy数据的保存

第4章常用科学计算模块快速入门

4.1Pandas科学计算库4.1.1初识Pandas4.1.2Pandas基本操作4.2Matplotlib可视化图库4.2.1初识Matplotlib4.2.2Matplotlib基本操作4.2.3Matplotlib绘图案例4.3SciPy科学计算库4.3.1初识SciPy4.3.2SciPy基本操作4.3.3SciPy图像处理案例第5章Python网络爬虫5.1爬虫基础5.1.1初识爬虫5.1.2网络爬虫的算法5.2爬虫入门实战5.2.1调用API5.2.2爬虫实战5.3爬虫进阶—高效率爬虫5.3.1多进程5.3.2多线程5.3.3协程5.3.4小结

第6章Python数据存储

6.1关系型数据库MySQL6.1.1初识MySQL6.1.2Python操作MySQL6.2NoSQL之MongoDB6.2.1初识NoSQL6.2.2Python操作MongoDB6.3本章小结6.3.1数据库基本理论6.3.2数据库结合6.3.3结束语

第7章Python数据分析

7.1数据获取7.1.1从键盘获取数据7.1.2文件的读取与写入7.1.3Pandas读写操作7.2数据分析案例7.2.1普查数据统计分析案例7.2.2小结

第8章自然语言处理

8.1Jieba分词基础8.1.1Jieba中文分词8.1.2Jieba分词的3种模式8.1.3标注词性与添加定义词8.2关键词提取8.2.1TF-IDF关键词提取8.2.2TextRank关键词提取8.3word2vec介绍8.3.1word2vec基础原理简介8.3.2word2vec训练模型8.3.3基于gensim的word2vec实战

第9章从回归分析到算法基础

9.1回归分析简介9.1.1“回归”一词的来源9.1.2回归与相关9.1.3回归模型的划分与应用9.2线性回归分析实战9.2.1线性回归的建立与求解9.2.2Python求解回归模型案例9.2.3检验、预测与控制

第10章 从K-Means聚类看算法调参

10.1K-Means基本概述10.1.1K-Means简介10.1.2目标函数10.1.3算法流程10.1.4算法优缺点分析10.2K-Means实战

第11章 从决策树看算法升级

11.1决策树基本简介11.2经典算法介绍11.2.1信息熵11.2.2信息增益11.2.3信息增益率11.2.4基尼系数11.2.5小结11.3决策树实战11.3.1决策树回归11.3.2决策树的分类

第12章 从朴素贝叶斯看算法多变193

12.1朴素贝叶斯简介12.1.1认识朴素贝叶斯12.1.2朴素贝叶斯分类的工作过程12.1.3朴素贝叶斯算法的优缺点12.23种朴素贝叶斯实战

第13章 从推荐系统看算法场景

13.1推荐系统简介13.1.1推荐系统的发展13.1.2协同过滤13.2基于文本的推荐13.2.1标签与知识图谱推荐案例13.2.2小结

第14章 从TensorFlow开启深度学习之旅

14.1初识TensorFlow14.1.1什么是TensorFlow14.1.2安装TensorFlow14.1.3TensorFlow基本概念与原理14.2TensorFlow数据结构14.2.1阶14.2.2形状14.2.3数据类型14.3生成数据十二法14.3.1生成Tensor14.3.2生成序列14.3.3生成随机数14.4TensorFlow实战

希望对你有帮助!!!


贵在坚持,自己掌握一些,在工作中不断打磨,高薪不是梦!!

H. 有没有用python实现的遗传算法优化BP神经网络的代码

下面是函数实现的代码部分:
clc
clear all
close all
%% 加载神经网络的训练样本 测试样本每列一个样本 输入P 输出T,T是标签
%样本数据就是前面问题描述中列出的数据
%epochs是计算时根据输出误差返回调整神经元权值和阀值的次数
load data
% 初始隐层神经元个数
hiddennum=31;
% 输入向量的最大值和最小值
threshold=[0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1;0 1];
inputnum=size(P,1); % 输入层神经元个数
outputnum=size(T,1); % 输出层神经元个数
w1num=inputnum*hiddennum; % 输入层到隐层的权值个数
w2num=outputnum*hiddennum;% 隐层到输出层的权值个数
N=w1num+hiddennum+w2num+outputnum; %待优化的变量的个数
%% 定义遗传算法参数
NIND=40; %个体数目
MAXGEN=50; %最大遗传代数
PRECI=10; %变量的二进制位数
GGAP=0.95; %代沟
px=0.7; %交叉概率
pm=0.01; %变异概率
trace=zeros(N+1,MAXGEN); %寻优结果的初始值
FieldD=[repmat(PRECI,1,N);repmat([-0.5;0.5],1,N);repmat([1;0;1;1],1,N)]; %区域描述器
Chrom=crtbp(NIND,PRECI*N); %初始种群
%% 优化
gen=0; %代计数器
X=bs2rv(Chrom,FieldD); %计算初始种群的十进制转换
ObjV=Objfun(X,P,T,hiddennum,P_test,T_test); %计算目标函数值
while gen

I. Python实现的几个常用排序算法实例

#encoding=utf-8
importrandom
fromimport
defdirectInsertSort(seq):
"""直接插入排序"""
size=len(seq)
foriinrange(1,size):
tmp,j=seq[i],i
whilej>0andtmp<seq[j-1]:
seq[j],j=seq[j-1],j-1
seq[j]=tmp
returnseq
defdirectSelectSort(seq):
"""直接选择排序"""
size=len(seq)
foriinrange(0,size-1):
k=i;j=i+1
whilej<size:
ifseq[j]<seq[k]:
k=j
j+=1
seq[i],seq[k]=seq[k],seq[i]
returnseq
defbubbleSort(seq):
"""冒泡排序"""
size=len(seq)
foriinrange(1,size):
forjinrange(0,size-i):
ifseq[j+1]<seq[j]:
seq[j+1],seq[j]=seq[j],seq[j+1]
returnseq
def_divide(seq,low,high):
"""快速排序划分函数"""
tmp=seq[low]
whilelow!=high:
whilelow<highandseq[high]>=tmp:high-=1
iflow<high:
seq[low]=seq[high]
low+=1
whilelow<highandseq[low]<=tmp:low+=1
iflow<high:
seq[high]=seq[low]
high-=1
seq[low]=tmp
returnlow
def_quickSort(seq,low,high):
"""快速排序辅助函数"""
iflow>=high:return
mid=_divide(seq,low,high)
_quickSort(seq,low,mid-1)
_quickSort(seq,mid+1,high)
defquickSort(seq):
"""快速排序包裹函数"""
size=len(seq)
_quickSort(seq,0,size-1)
returnseq
defmerge(seq,left,mid,right):
tmp=[]
i,j=left,mid
whilei<midandj<=right:
ifseq[i]<seq[j]:
tmp.append(seq[i])
i+=1
else:
tmp.append(seq[j])
j+=1
ifi<mid:tmp.extend(seq[i:])
ifj<=right:tmp.extend(seq[j:])
seq[left:right+1]=tmp[0:right-left+1]
def_mergeSort(seq,left,right):
ifleft==right:
return
else:
mid=(left+right)/2
_mergeSort(seq,left,mid)
_mergeSort(seq,mid+1,right)
merge(seq,left,mid+1,right)
#二路并归排序
defmergeSort(seq):
size=len(seq)
_mergeSort(seq,0,size-1)
returnseq
if__name__=='__main__':
s=[random.randint(0,100)foriinrange(0,20)]
prints
print" "
printdirectSelectSort((s))
printdirectInsertSort((s))
printbubbleSort((s))
printquickSort((s))
printmergeSort((s))

阅读全文

与python算法代码合集相关的资料

热点内容
pdf光子 浏览:832
自拍软件文件夹名称大全 浏览:325
程序员留学移民 浏览:49
梁中间部位箍筋加密区 浏览:117
频谱分析pdf 浏览:750
乐2怎么升级安卓70 浏览:172
java中获取日期 浏览:506
单片机74hc245 浏览:272
美国历史上的总统pdf 浏览:751
程序员脱单实验室靠不靠谱 浏览:458
php中间四位手机号 浏览:870
永旺app怎么样了 浏览:516
压缩空气流量计算软件 浏览:650
智慧聊天app怎么激活 浏览:924
一加换机备份到哪个文件夹 浏览:736
支撑pdf 浏览:417
java空文件夹删除 浏览:587
安卓9跟81有什么区别 浏览:912
n1蓝宝书pdf 浏览:245
为什么安卓机拍照那么丑 浏览:696