① python装饰器是什么意思
装饰器是程序开发中经常会用到的一个功能,用好了装饰器,开发效率如虎添翼,所以这也是Python面试中必问的问题,但对于好多小白来讲,这个功能 有点绕,自学时直接绕过去了,然后面试问到了就挂了,因为装饰器是程序开发的基础知识,这个都 不会,别跟人家说你会Python, 看了下面的文章,保证你学会装饰器。
1、先明白这段代码
####第一波####
deffoo():
print'foo'
foo#表示是函数
foo()#表示执行foo函数
####第二波####
deffoo():
print'foo'
foo=lambdax:x+1
foo()#执行下面的lambda表达式,而不再是原来的foo函数,因为函数foo被重新定义了
2、需求来了
初创公司有N个业务部门,1个基础平台部门,基础平台负责提供底层的功能,如:数据库操作、redis调用、监控API等功能。业务部门使用基础功能时,只需调用基础平台提供的功能即可。如下:
###############基础平台提供的功能如下###############
deff1():
print'f1'
deff2():
print'f2'
deff3():
print'f3'
deff4():
print'f4'
###############业务部门A调用基础平台提供的功能###############
f1()
f2()
f3()
f4()
###############业务部门B调用基础平台提供的功能###############
f1()
f2()
f3()
f4()
目前公司有条不紊的进行着,但是,以前基础平台的开发人员在写代码时候没有关注验证相关的问题,即:基础平台的提供的功能可以被任何人使用。现在需要对基础平台的所有功能进行重构,为平台提供的所有功能添加验证机制,即:执行功能前,先进行验证。
老大把工作交给 Low B,他是这么做的:
跟每个业务部门交涉,每个业务部门自己写代码,调用基础平台的功能之前先验证。诶,这样一来基础平台就不需要做任何修改了。
当天Low B 被开除了…
老大把工作交给 Low BB,他是这么做的:
###############基础平台提供的功能如下###############
deff1():
#验证1
#验证2
#验证3
print'f1'
deff2():
#验证1
#验证2
#验证3
print'f2'
deff3():
#验证1
#验证2
#验证3
print'f3'
deff4():
#验证1
#验证2
#验证3
print'f4'
###############业务部门不变###############
###业务部门A调用基础平台提供的功能###
f1()
f2()
f3()
f4()
###业务部门B调用基础平台提供的功能###
f1()
f2()
f3()
f4()
过了一周 Low BB 被开除了…
老大把工作交给 Low BBB,他是这么做的:
只对基础平台的代码进行重构,其他业务部门无需做任何修改
###############基础平台提供的功能如下###############
defcheck_login():
#验证1
#验证2
#验证3
pass
deff1():
check_login()
print'f1'
deff2():
check_login()
print'f2'
deff3():
check_login()
print'f3'
deff4():
check_login()
print'f4'
老大看了下Low BBB 的实现,嘴角漏出了一丝的欣慰的笑,语重心长的跟Low BBB聊了个天:
老大说:
写代码要遵循开发封闭原则,虽然在这个原则是用的面向对象开发,但是也适用于函数式编程,简单来说,它规定已经实现的功能代码不允许被修改,但可以被扩展,即:
封闭:已实现的功能代码块
开放:对扩展开发
如果将开放封闭原则应用在上述需求中,那么就不允许在函数 f1 、f2、f3、f4的内部进行修改代码,老板就给了Low BBB一个实现方案:
defw1(func):
definner():
#验证1
#验证2
#验证3
returnfunc()
returninner
@w1
deff1():
print'f1'
@w1
deff2():
print'f2'
@w1
deff3():
print'f3'
@w1
deff4():
print'f4'
对于上述代码,也是仅仅对基础平台的代码进行修改,就可以实现在其他人调用函数 f1 f2 f3 f4 之前都进行【验证】操作,并且其他业务部门无需做任何操作。
Low BBB心惊胆战的问了下,这段代码的内部执行原理是什么呢?
老大正要生气,突然Low BBB的手机掉到地上,恰恰屏保就是Low BBB的女友照片,老大一看一紧一抖,喜笑颜开,交定了Low BBB这个朋友。详细的开始讲解了:
单独以f1为例:
defw1(func):
definner():
#验证1
#验证2
#验证3
returnfunc()
returninner
@w1
deff1():
print'f1'
当写完这段代码后(函数未被执行、未被执行、未被执行),python解释器就会从上到下解释代码,步骤如下:
def w1(func): ==>将w1函数加载到内存
@w1
没错,从表面上看解释器仅仅会解释这两句代码,因为函数在没有被调用之前其内部代码不会被执行。
从表面上看解释器着实会执行这两句,但是 @w1 这一句代码里却有大文章,@函数名是python的一种语法糖。
如上例@w1内部会执行一下操作:
执行w1函数,并将 @w1 下面的函数作为w1函数的参数,即:@w1 等价于 w1(f1)
所以,内部就会去执行:
def inner:
#验证
return f1() # func是参数,此时 func 等于 f1
return inner # 返回的 inner,inner代表的是函数,非执行函数
其实就是将原来的 f1 函数塞进另外一个函数中
将执行完的 w1 函数返回值赋值给@w1下面的函数的函数名
w1函数的返回值是:
def inner:
#验证
return 原来f1() # 此处的 f1 表示原来的f1函数
然后,将此返回值再重新赋值给 f1,即:
新f1 =def inner:
#验证
return 原来f1()
所以,以后业务部门想要执行 f1 函数时,就会执行 新f1 函数,在 新f1 函数内部先执行验证,再执行原来的f1函数,然后将 原来f1 函数的返回值 返回给了业务调用者。
如此一来, 即执行了验证的功能,又执行了原来f1函数的内容,并将原f1函数返回值 返回给业务调用着
Low BBB 你明白了吗?要是没明白的话,我晚上去你家帮你解决吧!!!
先把上述流程看懂,之后还会继续更新…
3、问答时间
问题:被装饰的函数如果有参数呢?
#一个参数
defw1(func):
definner(arg):
#验证1
#验证2
#验证3
returnfunc(arg)
returninner
@w1
deff1(arg):
print'f1'
#两个参数
defw1(func):
definner(arg1,arg2):
#验证1
#验证2
#验证3
returnfunc(arg1,arg2)
returninner
@w1
deff1(arg1,arg2):
print'f1'
#三个参数
defw1(func):
definner(arg1,arg2,arg3):
#验证1
#验证2
#验证3
returnfunc(arg1,arg2,arg3)
returninner
@w1
deff1(arg1,arg2,arg3):
print'f1'
问题:可以装饰具有处理n个参数的函数的装饰器?
defw1(func):
definner(*args,**kwargs):
#验证1
#验证2
#验证3
returnfunc(*args,**kwargs)
returninner
@w1
deff1(arg1,arg2,arg3):
print'f1'
问题:一个函数可以被多个装饰器装饰吗?
defw1(func):
definner(*args,**kwargs):
#验证1
#验证2
#验证3
returnfunc(*args,**kwargs)
returninner
defw2(func):
definner(*args,**kwargs):
#验证1
#验证2
#验证3
returnfunc(*args,**kwargs)
returninner
@w1
@w2
deff1(arg1,arg2,arg3):
print'f1'
问题:还有什么更吊的装饰器吗?
#!/usr/bin/envpython
#coding:utf-8
defBefore(request,kargs):
print'before'
defAfter(request,kargs):
print'after'
defFilter(before_func,after_func):
defouter(main_func):
defwrapper(request,kargs):
before_result=before_func(request,kargs)
if(before_result!=None):
returnbefore_result;
main_result=main_func(request,kargs)
if(main_result!=None):
returnmain_result;
after_result=after_func(request,kargs)
if(after_result!=None):
returnafter_result;
returnwrapper
returnouter
@Filter(Before,After)
defIndex(request,kargs):
print'index'
② python装饰器的作用和功能
装饰器本质上是一个Python函数,它可以让其他函数在不需要做任何代码变动的前提下增加额外功能,装饰器的返回值也是一个函数对象。它经常用于有切面需求的场景,比如:插入日志、性能测试、事务处理、缓存、权限校验等场景。装饰器是解决这类问题的绝佳设计,有了装饰器,我们就可以抽离出大量与函数功能本身无关的雷同代码并继续重用。概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能
③ 什么是Python装饰器
所谓装饰器就是把函数包装一下,为函数添加一些附加功能,装饰器就是一个函数,参数为被包装的函数,返回包装后的函数:你可以试下:
defd(fp):
def_d(*arg,**karg):
print"dosthbeforefp.."
r=fp(*arg,**karg)
print"dosthafterfp.."
returnr
return_d
@d
deff():
print"callf"
#上面使用@d来表示装饰器和下面是一个意思
#f=d(f)
f()#调用f
④ 如何理解Python装饰器
装饰器是一个函数,下记为函数A。函数A的返回值是
当你调用了一个被装饰器A装饰的函数B时,会将函数B作为变量传入函数A中。函数A最终会返回一个函数,记为函数C。在函数执行时会将变量传入函数C中执行并返回结果。
defa(func):
defc(*args,**kwargs):
print(args)
print(kwargs)
returnfunc(*args,**kwargs)
returnc
@a
defb(*args):
returnsum(args)
if__name__=='__main__':
print(b)
#<functiona.<locals>.cat0x021B7348>
#当你调用到函数b时,实际拿到的是将函数b作为参数放入a中执行后返回的函数c
print(b(*[iforiinrange(10)]))
#(0,1,2,3,4,5,6,7,8,9)
#{}
#45
#第一行是函数c打印args的结果
#第二行是函数c打印kwargs的结果
#第三行是最终print(c(0,1,2,3,4,5,6,7,8,9))的结果
⑤ 如何理解Python装饰器
首先要理解一点,函数也是一个对象,这个对象可以被赋值给变量,所以通过变量就可以调用函数,所以本质上,装饰器就是一个返回函数的高阶函数。
Python 装饰器主要用于在代码运行期间动态增加函数功能
⑥ 如何理解Python装饰器
简单的说 装饰器相当于 一种 hook方法,
当调用函数A时,实际上调用的是装饰器方法,装饰器再去调用函数A,
装饰器 可以在 调用函数A之前 和之后执行你要定义的代码
(比如1:在调用A之前,检查传递给A的参数是否合法,
比如2:检查A返回的数据是否合法
比如3:在调用A之前要执行一个新方法)
使用装饰器的好处就是 不需要修改函数A的代码 ,你就可以给函数A增加新功能