导航:首页 > 编程语言 > 决策树算法java

决策树算法java

发布时间:2022-09-27 13:32:08

⑴ 数据挖掘工程师需要掌握java到什么程度

对 Java 虚拟机、 Java 并发要有比较深入研究和应用,熟练掌握 Hadoop、 HBase、 Hive、 Kafka、 Storm、 Spark工具,会用 linux,了解 Scala。如果设计到更高阶的应用,可能就需要会用 Python、 R 语言并且精通算法和数据结构了。

Java熟练的人一般可以负责客户端APP产品中服务器后端的工程设计,架构设计和开发工作,研究业界内的新技术及其应用,解决创新研发中的关键问题和技术难点,依据项目任务计划及时完成软件编码和单元测试项目,按照开发流程编写队友模块的设计文档。与产品经理、测试工程师、其他团队沟通协作,确保产品研发工作的质量和速度,协调或指导团队成员和其它开发人员的工作。熟悉设计模式,熟练掌握面向对象编程和事件驱动编程风格。

关于数据挖掘工程师的课程推荐CDA数据分析师的相关课程,课程主要培养学员硬性的数据挖掘理论与Python数据挖掘算法技能的同时,全方位提升学员的数据洞察力。课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。

⑵ KNIME是什么

Knime是基于Eclipse的开源数据挖掘软件,它通过工作流的方式来完成数据仓库以及数据挖掘中数据的抽取-转换-加载操作。

⑶ 做了这么多年Java开发,如何快速转行大数据

一、学习大数据是需要学习java和linux的

二、你有多年的java开发经验,那么可以直接跳过java课程部分,学习大数据技术!

三、分享一份大数据技术课程大纲供你了解参考

⑷ java转行大数据要学习哪些技术

对于Java程序员,大数据的主流平台hadoop是基于Java开发的,所以Java程序员往大数据开发方向转行从语言环境上更为顺畅,另外很多基于大数据的应用框架也是Java的,所以在很多大数据项目里掌握Java语言是有一定优势的。
当然,hadoop核心价值在于提供了分布式文件系统和分布式计算引擎,对于大部分公司而言,并不需要对这个引擎进行修改。这时候除了熟悉编程,你通常还需要学习数据处理和数据挖掘的一些知识。尤其是往数据挖掘工程师方向发展,则你需要掌握更多的算法相关的知识。
对于数据挖掘工程师而言,虽然也需要掌握编程工具,但大部分情况下是把hadoop当做平台和工具,借助这个平台和工具提供的接口使用各种脚本语言进行数据处理和数据挖掘。因此,如果你是往数据挖掘工程方向发展,那么,熟练掌握分布式编程语言如scala、spark-mllib等可能更为重要。
Java程序员转大数据工程师的学习路线图:
第一步:分布式计算框架
掌握hadoop和spark分布式计算框架,了解文件系统、消息队列和Nosql数据库,学习相关组件如hadoop、MR、spark、hive、hbase、redies、kafka等;
第二步:算法和工具
学习了解各种数据挖掘算法,如分类、聚类、关联规则、回归、决策树、神经网络等,熟练掌握一门数据挖掘编程工具:Python或者Scala。目前主流平台和框架已经提供了算法库,如hadoop上的Mahout和spark上的Mllib,你也可以从学习这些接口和脚本语言开始学习这些算法。
第三步:数学
补充数学知识:高数、概率论和线代
第四步:项目实践
1)开源项目:tensorflow:Google的开源库,已经有40000多个star,非常惊人,支持移动设备;
2)参加数据竞赛
3)通过企业实习获取项目经验
如果你仅仅是做大数据开发和运维,则可以跳过第二步和第三步,如果你是侧重于应用已有算法进行数据挖掘,那么第三步也可以先跳过。

⑸ cmd /c java weka.classifiers.trees.M5P -N -U -M 600.0 -t train_" +i + ".arff 这是什么意思呢

weka的分类
weka.classifiers分类
weka.classifiers.trees分类中的决策树
weka.classifiers.trees.M5P M5P决策树算法
-N -U -M 等都是参数,具体含义看看帮助,-t指定数据(train_"+i+".arff)

没执行,你可要看看你的java环境变量是否设置合适了,或者是否安装了java

⑹ 人工智能是学习什么

1、学习并掌握一些数学知识

高等数学是基础中的基础,一切理工科都需要这个打底,数据挖掘、人工智能、模式识别此类跟数据打交道的又尤其需要多元微积分运算基础。

线性代数很重要,一般来说线性模型是你最先要考虑的模型,加上很可能要处理多维数据,你需要用线性代数来简洁清晰的描述问题,为分析求解奠定基础。

概率论、数理统计、随机过程更是少不了,涉及数据的问题,不确定性几乎是不可避免的,引入随机变量顺理成章,相关理论、方法、模型非常丰富。很多机器学习的算法都是建立在概率论和统计学的基础上的,比如贝叶斯分类器、高斯隐马尔可夫链。

再就是优化理论与算法,除非你的问题是像二元一次方程求根那样有现成的公式,否则你将不得不面对各种看起来无解但是要解的问题,优化将是你的GPS为你指路。

以上这些知识打底,就可以开拔了,针对具体应用再补充相关的知识与理论,比如说一些我觉得有帮助的是数值计算、图论、拓扑,更理论一点的还有实/复分析、测度论,偏工程类一点的还有信号处理、数据结构。

2、掌握经典机器学习理论和算法

如果有时间可以为自己建立一个机器学习的知识图谱,并争取掌握每一个经典的机器学习理论和算法,我简单地总结如下:

1) 回归算法:常见的回归算法包括最小二乘法(OrdinaryLeast Square),逻辑回归(Logistic Regression),逐步式回归(Stepwise Regression),多元自适应回归样条(MultivariateAdaptive Regression Splines)以及本地散点平滑估计(Locally Estimated Scatterplot Smoothing);

2) 基于实例的算法:常见的算法包括 k-Nearest Neighbor(KNN), 学习矢量量化(Learning Vector Quantization, LVQ),以及自组织映射算法(Self-Organizing Map , SOM);

3) 基于正则化方法:常见的算法包括:Ridge Regression, Least Absolute Shrinkage and Selection Operator(LASSO),以及弹性网络(Elastic Net);

4) 决策树学习:常见的算法包括:分类及回归树(ClassificationAnd Regression Tree, CART), ID3 (Iterative Dichotomiser 3), C4.5, Chi-squared Automatic Interaction Detection(CHAID), Decision Stump, 随机森林(Random Forest), 多元自适应回归样条(MARS)以及梯度推进机(Gradient Boosting Machine, GBM);

5) 基于贝叶斯方法:常见算法包括:朴素贝叶斯算法,平均单依赖估计(AveragedOne-Dependence Estimators, AODE),以及Bayesian Belief Network(BBN);

6) 基于核的算法:常见的算法包括支持向量机(SupportVector Machine, SVM), 径向基函数(Radial Basis Function ,RBF), 以及线性判别分析(Linear Discriminate Analysis ,LDA)等;

7) 聚类算法:常见的聚类算法包括 k-Means算法以及期望最大化算法(Expectation Maximization, EM);

8) 基于关联规则学习:常见算法包括 Apriori算法和Eclat算法等;

9) 人工神经网络:重要的人工神经网络算法包括:感知器神经网络(PerceptronNeural Network), 反向传递(Back Propagation), Hopfield网络,自组织映射(Self-OrganizingMap, SOM)。学习矢量量化(Learning Vector Quantization, LVQ);

10) 深度学习:常见的深度学习算法包括:受限波尔兹曼机(RestrictedBoltzmann Machine, RBN), Deep Belief Networks(DBN),卷积网络(Convolutional Network), 堆栈式自动编码器(Stacked Auto-encoders);

11) 降低维度的算法:常见的算法包括主成份分析(PrincipleComponent Analysis, PCA),偏最小二乘回归(Partial Least Square Regression,PLS), Sammon映射,多维尺度(Multi-Dimensional Scaling, MDS), 投影追踪(ProjectionPursuit)等;

12) 集成算法:常见的算法包括:Boosting, Bootstrapped Aggregation(Bagging),AdaBoost,堆叠泛化(Stacked Generalization, Blending),梯度推进机(GradientBoosting Machine, GBM),随机森林(Random Forest)。

3、掌握一种编程工具,比如Python
一方面Python是脚本语言,简便,拿个记事本就能写,写完拿控制台就能跑;另外,Python非常高效,效率比java、r、matlab高。matlab虽然包也多,但是效率是这四个里面最低的。

4、了解行业最新动态和研究成果,比如各大牛的经典论文、博客、读书笔记、微博微信等媒体资讯。

5、买一个GPU,找一个开源框架,自己多动手训练深度神经网络,多动手写写代码,多做一些与人工智能相关的项目。

6、选择自己感兴趣或者工作相关的一个领域深入下去
人工智能有很多方向,比如NLP、语音识别、计算机视觉等等,生命有限,必须得选一个方向深入的钻研下去,这样才能成为人工智能领域的大牛,有所成就。

根据网络给的定义,人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的还能的理论、方法、技术及应用系统的一门新的技术科学。
网络关于人工智能的定义详解中说道:人工智能是计算机的一个分支,二十世纪七十年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能)。也被认为是二十一世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近三十年来它获得了迅速的发展,在很多学科领域都获得了广泛应用,并取得了丰硕的成果,人工智能已逐步成为一个独立的分支,无论在理论和实践上都已自成一个系统。
综上,从定义上讲,人工智能是一项技术。

⑺ 学人工智能要学些什么

、数学基础。数学基础知识蕴含着处理智能问题的基本思想与方法,也是理解复杂算法的必备要素。这一模块覆盖了人工智能必备的数学基础知识,包括线性代数、概率论、最优化方法等。
2、机器学习。机器学习的作用是从数据中习得学习算法,进而解决实际的应用问题,是人工智能的核心内容之一。这一模块覆盖了机器学习中的主要方法,包括线性回归、决策树、支持向量机、聚类等。
3、人工神经网络。作为机器学习的一个分支,神经网络将认知科学引入机器学习中,以模拟生物神经系统对真实世界的交互反应,并取得了良好的效果。这一模块覆盖了神经网络中的基本概念,包括多层神经网络、前馈与反向传播、自组织神经网络等。
4、深度学习。简而言之,深度学习就是包含多个中间层的神经网络,数据爆炸和计算力飙升推动了深度学习的崛起。这一模块覆盖了深度学习的概念与实现,包括深度前馈网络、深度学习中的正则化、自编码器等。
5、神经网络实例。在深度学习框架下,一些神经网络已经被用于各种应用场景,并取得了不俗的效果。这一模块覆盖了几种神经网络实例,包括深度信念网络、卷积神经网络、循环神经网络等。
6、深度学习之外的人工智能。深度学习既有优点也有局限,其他方向的人工智能研究正是有益的补充。这一模块覆盖了与深度学习无关的典型学习方法,包括概率图模型、集群智能、迁移学习、知识图谱等。
7、应用场景。除了代替人类执行重复性的劳动,在诸多实际问题的处理中,人工智能也提供了有意义的尝试。这一模块覆盖了人工智能技术在几类实际任务中的应用,包括计算机视觉、语音处理、对话系统等。

⑻ 如何用java做用户行为分析用什么算法

据我所知,java好像对大数据分析方面没有什么现成的方法或包可以调用。
现在做数据分析(机器学习)用的比较多的是Python和R还有Matlib;
//如果是简单的汇总分析,分类,回归的话,excel就足够了。java使用数据库也可以完成。
其中Python算比较简单的,有现成的科学计算工具和非常活跃的社区。
常用的算法:回归分析,支持向量机(SVM),决策树,K-近邻(KNN),K-均值(k-means)。。。还有比较火的深度学习(DL)。可以了解一下。

⑼ java 分类器算法问题!!急。。。。

SVM主要通过训练集进行训练之后,用来进行数据分类(通常是二分类)。在对SVM进行训练之前你要确定输入的特征向量是什么,期望输出又是什么,对于你的系统很显然期望输出可以假定为:+1和-1,其中+1表示正面的,-1表示负面的,训练集就是那两张英文词列表,你可以用这两英文词列表来对SVM进行训练从而得到一个SVM模型,然后就可以用这个模型来对新的英文序列(中文词的英文翻译序列)进行“极性”分类了。其实分类器并不只有SVM,你还可以使用BP神经网络,AdaBoost等来实现数据分类。如果还有不明白的地方可以给我留言:blog.sina.com.cn/kwapoong
建议你在Matlab下进行试验,这样效率会快些。

⑽ 作为一个Java程序员,该怎么转行做大数据分析师

我也做过好多年Java,去年开始也接触了些大数据的架构。跟你情况类似。我的观点是你可以去动手搭建一下,玩玩,其实并不像你想象的那样高深莫测。都是些工具,我不太喜欢学如何用这些工具,只要能解决我要解决的问题,去用就是了。如果工具的实现感兴趣就去看看代码。工具本身怎么用就是个fact,只是知道和不知道的区别。不要觉得做Java就比别人低一等。你一样可以做的很出色。会用那些大数据工具也并不代表能力有多强

阅读全文

与决策树算法java相关的资料

热点内容
压缩因子定义 浏览:968
cd命令进不了c盘怎么办 浏览:214
药业公司招程序员吗 浏览:974
毛选pdf 浏览:659
linuxexecl函数 浏览:727
程序员异地恋结果 浏览:374
剖切的命令 浏览:229
干什么可以赚钱开我的世界服务器 浏览:290
php备案号 浏览:990
php视频水印 浏览:167
怎么追程序员的女生 浏览:487
空调外压缩机电容 浏览:79
怎么将安卓变成win 浏览:459
手机文件管理在哪儿新建文件夹 浏览:724
加密ts视频怎么合并 浏览:775
php如何写app接口 浏览:804
宇宙的琴弦pdf 浏览:396
js项目提成计算器程序员 浏览:944
pdf光子 浏览:834
自拍软件文件夹名称大全 浏览:328