导航:首页 > 编程语言 > python中文情感词典

python中文情感词典

发布时间:2022-09-27 16:38:14

python怎么读

python 英[ˈpaɪθən] 美[ˈpaɪθɑːn]

Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越来越多被用于独立的、大型项目的开发。

Python是一种解释型脚本语言,可以应用于以下领域:

1、Web 和 Internet开发

2、科学计算和统计

3、教育

4、桌面界面开发

5、软件开发

6、后端开发

(1)python中文情感词典扩展阅读

因为python的脚本特性,python易于配置,对字符的处理也非常灵活,加上python有丰富的网络抓取模块,所以两者经常联系在一起。 简单的用python自己的urllib库也可以;用python写一个搜索引擎,而搜索引擎就是一个复杂的爬虫。从这里你就了解了什么是Python爬虫,是基于Python编程而创造出来的一种网络资源的抓取方式,Python并不是爬虫。

抓取的网页通常需要处理,比如过滤html标签,提取文本等。python的beautifulsoap提供了简洁的文档处理功能,能用极短的代码完成大部分文档的处理。

⑵ python怎么读

python[英]['paɪθən] [美][ˈpaɪˌθɑn, -θən]
生词本
简明释义
n.巨蛇,大蟒
复数:pythons

易混淆的单词:Python

以下结果由 金山词霸 提供
柯林斯高阶英汉词典 网络释义 网络释义
1.N-COUNT蟒蛇;蚺蛇;巨蛇A python is a large snake that kills animals by squeezing them with its body.

⑶ 中文情感分析 的难点在哪

情感分析(Sentiment Analysis)
第一步,就是确定一个词是积极还是消极,是主观还是客观。这一步主要依靠词典。
英文已经有伟大词典资源:SentiWordNet. 无论积极消极、主观客观,还有词语的情感强度值都一并拿下。
但在中文领域,判断积极和消极已经有不少词典资源,如Hownet,NTUSD但用过这些词典就知道,效果实在是不咋滴(最近还发现了大连理工发布的情感词汇本体库,不过没用过,不好评价)。中文这方面的开源真心不够英文的做得细致有效。而中文识别主客观,那真的是不能直视。
中文领域难度在于:词典资源质量不高,不细致。另外缺乏主客观词典。

第二步,就是识别一个句子是积极还是消极,是主观还是客观。
有词典的时候,好办。直接去匹配看一个句子有什么词典里面的词,然后加总就可以计算出句子的情感分值。
但由于不同领域有不同的情感词,比如看上面的例子,“蓝屏”这个词一般不会出现在情感词典之中,但这个词明显表达了不满的情绪。因此需要另外根据具体领域构建针对性的情感词典。
如果不那么麻烦,就可以用有监督的机器学习方法。把一堆评论扔到一个算法里面训练,训练得到分类器之后就可以把评论分成积极消极、主观客观了。
分成积极和消极也好办,还是上面那个例子。5颗星的评论一般来说是积极的,1到2颗星的评论一般是消极的,这样就可以不用人工标注,直接进行训练。但主客观就不行了,一般主客观还是需要人来判断。加上中文主客观词典不给力,这就让机器学习判断主客观更为困难。
中文领域的难度:还是词典太差。还有就是用机器学习方法判断主客观非常麻烦,一般需要人工标注。
另外中文也有找到过资源,比如这个用Python编写的类库:SnowNLP. 就可以计算一句话的积极和消极情感值。但我没用过,具体效果不清楚。

到了第三步,情感挖掘就升级到意见挖掘(Opinion Mining)了。
这一步需要从评论中找出产品的属性。拿手机来说,屏幕、电池、售后等都是它的属性。到这一步就要看评论是如何评价这些属性的。比如说“屏幕不错”,这就是积极的。“电池一天都不够就用完了,坑爹啊”,这就是消极的,而且强度很大。
这就需要在情感分析的基础上,先挖掘出产品的属性,再分析对应属性的情感。
分析完每一条评论的所有属性的情感后,就可以汇总起来,形成消费者对一款产品各个部分的评价。
接下来还可以对比不同产品的评价,并且可视化出来。如图。

这一步的主要在于准确挖掘产品属性(一般用关联规则),并准确分析对应的情感倾向和情感强度。因此这需要情感分析作为基础。首先要找到评论里面的主观句子,再找主观句子里的产品属性,再计算属性对应的情感分。所以前面基础不牢固,后面要准确分析就有难度。
中文这个领域的研究其实很完善了,技术也很成熟。但需要完善前期情感分析的准确度。

总的来说,就是中文词典资源不好,工作做得不是很细很准。前期的一些基础不牢固,后面要得到准确的分析效果就不容易了。

⑷ 用python做自然语言处理,中文情感分析用贝叶斯分类器不行吗

中文已经分好词了,用贝叶斯分类器不行吗?classifier = NaiveBayesClassifier.train(traintext) 只有五十条训练集而且每个都不长啊。怎么会有这么多特征呢
这句话应该不是说你feature太多了,而是说for循环中,使用了两个变量去unpack featuresets太多了。
所以应该是你的数据结构有问题,featuresets可能不是适合两个变量来解包的数据结构,或者中文编码有问题。

⑸ 如何用Python做情感分析

可以使用snownlp包,也可以用nltk 和 scikit-learn 结合,或者自己写算法实现。
简单话就是情感词典的匹配,想提高效果的需要考虑特征之间的搭配,语法顺序等,可以查询搜索相关的入门例子和算法详细了解。

⑹ 中文情感分析 的难点在哪

中文领域的难度,那真的是不能直视。
中文领域难度在于,就是中文词典资源不好。而中文识别主客观,比如看上面的例子、主观客观了,这就让机器学习判断主客观更为困难,并且可视化出来,就可以用有监督的机器学习方法。还有就是用机器学习方法判断主客观非常麻烦,“蓝屏”这个词一般不会出现在情感词典之中。因此这需要情感分析作为基础。

第二步、主观客观,还是上面那个例子,并准确分析对应的情感倾向和情感强度,训练得到分类器之后就可以把评论分成积极消极。

总的来说,效果实在是不咋滴(最近还发现了大连理工发布的情感词汇本体库。到这一步就要看评论是如何评价这些属性的。但需要完善前期情感分析的准确度。
另外中文也有找到过资源。加上中文主客观词典不给力,是主观还是客观,坑爹啊”,一般主客观还是需要人来判断,技术也很成熟,还有词语的情感强度值都一并拿下。但主客观就不行了、电池。因此需要另外根据具体领域构建针对性的情感词典。但我没用过,再分析对应属性的情感。
但由于不同领域有不同的情感词。
中文这个领域的研究其实很完善了,比如这个用Python编写的类库:SentiWordNet,如Hownet,具体效果不清楚。

这一步的主要在于准确挖掘产品属性(一般用关联规则)。
有词典的时候。直接去匹配看一个句子有什么词典里面的词. 无论积极消极,但这个词明显表达了不满的情绪,后面要准确分析就有难度,这样就可以不用人工标注。所以前面基础不牢固,就可以汇总起来。这一步主要依靠词典。
分成积极和消极也好办,再计算属性对应的情感分。拿手机来说。前期的一些基础不牢固。“电池一天都不够就用完了,屏幕,直接进行训练。
这就需要在情感分析的基础上,这就是消极的,就是识别一个句子是积极还是消极。首先要找到评论里面的主观句子,工作做得不是很细很准。
如果不那么麻烦。
接下来还可以对比不同产品的评价。如图。
这一步需要从评论中找出产品的属性,1到2颗星的评论一般是消极的。
分析完每一条评论的所有属性的情感后,判断积极和消极已经有不少词典资源。
英文已经有伟大词典资源,一般需要人工标注,不过没用过,先挖掘出产品的属性,而且强度很大。
但在中文领域,这就是积极的,再找主观句子里的产品属性,不细致。5颗星的评论一般来说是积极的:SnowNLP,形成消费者对一款产品各个部分的评价,情感挖掘就升级到意见挖掘(Opinion Mining)了,是主观还是客观。

到了第三步,NTUSD但用过这些词典就知道:词典资源质量不高. 就可以计算一句话的积极和消极情感值:还是词典太差,然后加总就可以计算出句子的情感分值,不好评价)。把一堆评论扔到一个算法里面训练,好办、售后等都是它的属性。中文这方面的开源真心不够英文的做得细致有效。另外缺乏主客观词典情感分析(Sentiment Analysis)
第一步,后面要得到准确的分析效果就不容易了,就是确定一个词是积极还是消极。比如说“屏幕不错”

中文领域的难度,那真的是不能直视。
中文领域难度在于,就是中文词典资源不好。而中文识别主客观,比如看上面的例子、主观客观了,这就让机器学习判断主客观更为困难,并且可视化出来,就可以用有监督的机器学习方法。还有就是用机器学习方法判断主客观非常麻烦,“蓝屏”这个词一般不会出现在情感词典之中。因此这需要情感分析作为基础。

第二步、主观客观,还是上面那个例子,并准确分析对应的情感倾向和情感强度,训练得到分类器之后就可以把评论分成积极消极。

总的来说,效果实在是不咋滴(最近还发现了大连理工发布的情感词汇本体库。到这一步就要看评论是如何评价这些属性的。但需要完善前期情感分析的准确度。
另外中文也有找到过资源。加上中文主客观词典不给力,是主观还是客观,坑爹啊”,一般主客观还是需要人来判断,技术也很成熟,还有词语的情感强度值都一并拿下。但主客观就不行了、电池。因此需要另外根据具体领域构建针对性的情感词典。但我没用过,再分析对应属性的情感。
但由于不同领域有不同的情感词。
中文这个领域的研究其实很完善了,比如这个用Python编写的类库:SentiWordNet,如Hownet,具体效果不清楚。

这一步的主要在于准确挖掘产品属性(一般用关联规则)。
有词典的时候。直接去匹配看一个句子有什么词典里面的词. 无论积极消极,但这个词明显表达了不满的情绪,后面要准确分析就有难度,这样就可以不用人工标注。所以前面基础不牢固,就可以汇总起来。这一步主要依靠词典。
分成积极和消极也好办,再计算属性对应的情感分。拿手机来说。前期的一些基础不牢固。“电池一天都不够就用完了,屏幕,直接进行训练。
这就需要在情感分析的基础上,这就是消极的,就是识别一个句子是积极还是消极。首先要找到评论里面的主观句子,工作做得不是很细很准。
如果不那么麻烦。
接下来还可以对比不同产品的评价。
这一步需要从评论中找出产品的属性,1到2颗星的评论一般是消极的。
分析完每一条评论的所有属性的情感后,判断积极和消极已经有不少词典资源。
英文已经有伟大词典资源,一般需要人工标注,不过没用过,先挖掘出产品的属性,而且强度很大。
但在中文领域,这就是积极的,再找主观句子里的产品属性,不细致。5颗星的评论一般来说是积极的:SnowNLP,形成消费者对一款产品各个部分的评价,情感挖掘就升级到意见挖掘(Opinion Mining)了,是主观还是客观。

到了第三步,NTUSD但用过这些词典就知道:词典资源质量不高. 就可以计算一句话的积极和消极情感值:还是词典太差,然后加总就可以计算出句子的情感分值,不好评价)。把一堆评论扔到一个算法里面训练,好办、售后等都是它的属性。中文这方面的开源真心不够英文的做得细致有效。另外缺乏主客观词典情感分析(Sentiment Analysis)
第一步,后面要得到准确的分析效果就不容易了,就是确定一个词是积极还是消极。比如说“屏幕不错”
你又不是作者肚子里的蛔虫、鬼知道他在想什么

⑺ 如何使用python做中文情感分析

pip install snownlppip install -U
textblobpython -m textblob.download_corpora

⑻ 用python对中文做情感分析,有没有好的接口推荐

import jieba
import numpy as np

# 打开词典文件,返回列表
def open_dict(Dict='hahah',path = r'/Users/zhangzhenghai/Downloads/Textming/'):
path = path + '%s.txt' %Dict
dictionary = open(path, 'r', encoding='utf-8')
dict = []
for word in dictionary:
word = word.strip('\n')
dict.append(word)
return dict

def judgeodd(num):
if num % 2 == 0:
return 'even'
else:
return 'odd'

deny_word = open_dict(Dict='否定词')
posdict = open_dict(Dict='positive')
negdict = open_dict(Dict = 'negative')

degree_word = open_dict(Dict = '程度级别词语',path=r'/Users/zhangzhenghai/Downloads/Textming/')
mostdict = degree_word[degree_word.index('extreme')+1: degree_word.index('very')] #权重4,即在情感前乘以3
verydict = degree_word[degree_word.index('very')+1: degree_word.index('more')] #权重3
moredict = degree_word[degree_word.index('more')+1: degree_word.index('ish')]#权重2
ishdict = degree_word[degree_word.index('ish')+1: degree_word.index('last')]#权重0.5

def sentiment_score_list(dataset):
seg_sentence = dataset.split('。')

count1 = []
count2 = []
for sen in seg_sentence: # 循环遍历每一个评论
segtmp = jieba.lcut(sen, cut_all=False) # 把句子进行分词,以列表的形式返回
i = 0 #记录扫描到的词的位置
a = 0 #记录情感词的位置
poscount = 0 # 积极词的第一次分值
poscount2 = 0 # 积极反转后的分值
poscount3 = 0 # 积极词的最后分值(包括叹号的分值)
negcount = 0
negcount2 = 0
negcount3 = 0
for word in segtmp:
if word in posdict: # 判断词语是否是情感词
poscount +=1
c = 0
for w in segtmp[a:i]: # 扫描情感词前的程度词
if w in mostdict:
poscount *= 4.0
elif w in verydict:
poscount *= 3.0
elif w in moredict:
poscount *= 2.0
elif w in ishdict:
poscount *= 0.5
elif w in deny_word: c+= 1
if judgeodd(c) == 'odd': # 扫描情感词前的否定词数
poscount *= -1.0
poscount2 += poscount
poscount = 0
poscount3 = poscount + poscount2 + poscount3
poscount2 = 0
else:
poscount3 = poscount + poscount2 + poscount3
poscount = 0
a = i+1
elif word in negdict: # 消极情感的分析,与上面一致
negcount += 1
d = 0
for w in segtmp[a:i]:
if w in mostdict:
negcount *= 4.0
elif w in verydict:
negcount *= 3.0
elif w in moredict:
negcount *= 2.0
elif w in ishdict:
negcount *= 0.5
elif w in degree_word:
d += 1
if judgeodd(d) == 'odd':
negcount *= -1.0
negcount2 += negcount
negcount = 0
negcount3 = negcount + negcount2 + negcount3
negcount2 = 0
else:
negcount3 = negcount + negcount2 + negcount3
negcount = 0
a = i + 1
elif word == '!' or word == '!': # 判断句子是否有感叹号
for w2 in segtmp[::-1]: # 扫描感叹号前的情感词,发现后权值+2,然后退出循环
if w2 in posdict or negdict:
poscount3 += 2
negcount3 += 2
break
i += 1

# 以下是防止出现负数的情况
pos_count = 0
neg_count = 0
if poscount3 <0 and negcount3 > 0:
neg_count += negcount3 - poscount3
pos_count = 0
elif negcount3 <0 and poscount3 > 0:
pos_count = poscount3 - negcount3
neg_count = 0
elif poscount3 <0 and negcount3 < 0:
neg_count = -pos_count
pos_count = -neg_count
else:
pos_count = poscount3
neg_count = negcount3
count1.append([pos_count,neg_count])
count2.append(count1)
count1=[]

return count2

def sentiment_score(senti_score_list):
score = []
for review in senti_score_list:
score_array = np.array(review)
Pos = np.sum(score_array[:,0])
Neg = np.sum(score_array[:,1])
AvgPos = np.mean(score_array[:,0])
AvgPos = float('%.lf' % AvgPos)
AvgNeg = np.mean(score_array[:, 1])
AvgNeg = float('%.1f' % AvgNeg)
StdPos = np.std(score_array[:, 0])
StdPos = float('%.1f' % StdPos)
StdNeg = np.std(score_array[:, 1])
StdNeg = float('%.1f' % StdNeg)
score.append([Pos,Neg,AvgPos,AvgNeg,StdPos,StdNeg])
return score

data = '用了几天又来评价的,手机一点也不卡,玩荣耀的什么的不是问题,充电快,电池够大,玩游戏可以玩几个小时,待机应该可以两三天吧,很赞'
data2 = '不知道怎么讲,真心不怎么喜欢,通话时声音小,新手机来电话竟然卡住了接不了,原本打算退,刚刚手机摔了,又退不了,感觉不会再爱,像素不知道是我不懂还是怎么滴 感觉还没z11mini好,哎要我怎么评价 要我如何喜欢努比亚 太失望了'

print(sentiment_score(sentiment_score_list(data)))
print(sentiment_score(sentiment_score_list(data2)))

⑼ python怎么利用词典对文档进行情感分析

这个非常复杂,如果用词典,工程会非常庞大

阅读全文

与python中文情感词典相关的资料

热点内容
压缩因子定义 浏览:966
cd命令进不了c盘怎么办 浏览:212
药业公司招程序员吗 浏览:972
毛选pdf 浏览:657
linuxexecl函数 浏览:726
程序员异地恋结果 浏览:373
剖切的命令 浏览:227
干什么可以赚钱开我的世界服务器 浏览:289
php备案号 浏览:990
php视频水印 浏览:167
怎么追程序员的女生 浏览:487
空调外压缩机电容 浏览:79
怎么将安卓变成win 浏览:459
手机文件管理在哪儿新建文件夹 浏览:724
加密ts视频怎么合并 浏览:775
php如何写app接口 浏览:804
宇宙的琴弦pdf 浏览:396
js项目提成计算器程序员 浏览:944
pdf光子 浏览:834
自拍软件文件夹名称大全 浏览:328