导航:首页 > 编程语言 > python中常用的数据库

python中常用的数据库

发布时间:2022-09-28 03:58:31

python 常用的标准库以及第三方库有哪些

标准库
Python拥有一个强大的标准库。Python语言的核心只包含数字、字符串、列表、字典、文件等常见类型和函数,而由Python标准库提供了系统管理、网络通信、文本处理、数据库接口、图形系统、XML处理等额外的功能。
Python标准库的主要功能有:
1.文本处理,包含文本格式化、正则表达式匹配、文本差异计算与合并、Unicode支持,二进制数据处理等功能
2.文件处理,包含文件操作、创建临时文件、文件压缩与归档、操作配置文件等功能
3.操作系统功能,包含线程与进程支持、IO复用、日期与时间处理、调用系统函数、日志(logging)等功能
4.网络通信,包含网络套接字,SSL加密通信、异步网络通信等功能
5.网络协议,支持HTTP,FTP,SMTP,POP,IMAP,NNTP,XMLRPC等多种网络协议,并提供了编写网络服务器的框架
6.W3C格式支持,包含HTML,SGML,XML的处理。
7.其它功能,包括国际化支持、数学运算、HASH、Tkinter等

Python社区提供了大量的第三方模块,使用方式与标准库类似。它们的功能覆盖科学计算、Web开发、数据库接口、图形系统多个领域。第三方模块可以使用Python或者C语言编写。SWIG,SIP常用于将C语言编写的程序库转化为Python模块。Boost C++ Libraries包含了一组函式库,Boost.Python,使得以Python或C++编写的程式能互相调用。Python常被用做其他语言与工具之间的“胶水”语言。
着名第三方库
1.Web框架
Django: 开源Web开发框架,它鼓励快速开发,并遵循MVC设计,开发周期短。
ActiveGrid: 企业级的Web2.0解决方案。
Karrigell: 简单的Web框架,自身包含了Web服务,py脚本引擎和纯python的数据库PyDBLite。
Tornado: 一个轻量级的Web框架,内置非阻塞式服务器,而且速度相当快
webpy: 一个小巧灵活的Web框架,虽然简单但是功能强大。
CherryPy: 基于Python的Web应用程序开发框架。
Pylons: 基于Python的一个极其高效和可靠的Web开发框架。
Zope: 开源的Web应用服务器。
TurboGears: 基于Python的MVC风格的Web应用程序框架。
Twisted: 流行的网络编程库,大型Web框架。
Quixote: Web开发框架。

㈡ python的作用

万能编程语言“Python”的五大主要用途:
1、web开发
Python的诞生历史比ewb还要早,由于Python是一种解释型的脚本语言,开发效率高,所有非常适合用来做web开发。
Python有上百种web开发框架,有很多成熟的模板技术,选择Python开发web应用,不但开发效率高,而且运行速度快。
常见的web开发框架:Django、flask、tornado等。
2、网络爬虫
网络爬虫是Python比较常用的一个场景,国际上,Google在早期大量地使用Python语言作为网络爬虫的基础,带动了整个Python语言的应用发展。以前国内很多人用采集器搜刮网上的内容,现在用Python收集网上信息比以前容易了许多。比如:从各大网站抓取商品折扣信息,比较获取最优选择;对社交网络上发言进行收集分类,生成情绪地图,分析语言习惯……爬虫应用很多,几乎每个人学习爬虫之后都能够通过爬虫去做一些好玩有趣且有用的事情。
3、人工智能
人工智能是现在非常火的一个方向,AI热潮让Python语言的未来充满了无限的潜力。
因为Python有很多库很方便做人工智能,比如Numpy、Scipy做数值计算的,Sklearn做机器学习的,pybrain做神经网络的,matplotlib做数据可视化的。在人工智能大范畴领域内的数据挖掘、机器学习、神经网络、深度学习等方面都是主流的编程语言,得到广泛的支持和应用。
4、数据分析
数据分析处理方面,Python有很完备的生态环境。大数据分析中涉及到的分布式计算、数据可视化、数据库操作等,Python中都有成熟的模块可以选择完成其功能。对于Hadoop-MapRece和Spark,都可以直接使用Python完成计算逻辑,这无论对于数据科学家还是对于数据工程师而言都是十分便利的。
5、自动化运维
Python对于服务器运维而言也有十分重要的用途。由于目前几乎所有Linux发行版本都自带了Python解释器,使用Python脚本进行批量化的文件部署和运行调整都成了Linux服务器上很不错的选择。Python中也包含了许多方便的工具,从调控ssh/sftp用的paramiko,到监控服务用的supervisor,再到bazel等构建工具,甚至conan等用于C++的包管理工具,Python提供了全方位的工具集合,而在这基础上,结合web,开发方便运维的工具会变得十分简单。

㈢ 话说python一般都用什么数据库

内置sqlite库,其他数据库需要自己安装,常用的都支持 mysql

㈣ python如何访问数据库

1.背景:

python提供了很多数据库接口, 常用的数据库有 MS SQL Server /mysql /oracle 等。

打开链接 https://wiki.python.org/moin/DatabaseInterfaces

是python 关于数据库接口的一个总结 , 可以看到python支持的访问的数据库系统。

2.模块:

python 主要是通过模块和数据库连接的。

2.1 安装模块:

如果使用anconda,本身就会集合很多模块,不需要手动安装。如果用pycharm就要手动安装模块。

安装模块流程:

下载模块扩展包放到路径下——>cmd找到相应路径——> pip install +扩展包名字

下面列举一些常用连接数据库的模块:pymssql / sqlite3/ PyMySQL/pyodbc/odbc/adodbapi

不同模块连接的数据库不同, 支持的版本系统有的也不一样。但是大体用法都是相近的, 因为有DB-API

相关推荐:《Python教程》

3.Python DB-API

3.1背景:

在没有DB-API 之前, 不同数据库有不同的数据库接口程序, 这就导致python 访问 database 的接口程序非常混乱。如果我们学习了python 访问 mysql 的接口程序, 然后要切换到另一个数据库上, 我们还要在学习另外一个数据库的接口程序。python DB-API就是为了解决接口程序混乱而生成的。有了DB-API, 在不同数据库上移植代码就变得简单的多了。

3.2Python DB-API:

Python 定义了一套操作数据库的 DB-API 接口,它是一个规范,定义了一系列必须的对象和数据库存取方式,以便为不同的底层数据库系统提供一致的访问接口

这个链接就是python 官方给定的 DB-API 的说明 https://www.python.org/dev/peps/pep-0249/

3.3 Python DB--API的内容:

连接对象:

?Connect()创建连接:host/server /user/password/db connect方法生成一个connect对象, 我们通过这个对象来访问数据库。符合标准的模块都会实现connect方法。

?close():关闭连接

?commit():提交当前事务。做出某些更改后确保已经进行了提交,这样才可以将这些修改真正地保存到database中

?rollback() 回滚上一次调用 commit()以来对数据库所做的更改

?cursor():创建游标。系统为用户开通的一个数据缓冲区,用于存放SQL语句执行结果。cursor游标是有状态的,它可以记录当前已经取到结果的第几个记录了,因此,一般你只可以遍历结果集一次。在上面的情况下,如果执行fetchone()会返回为空。这一点在测试时需要注意

游标对象:

?Execute()执行一个数据库查询或命令。 execute 执行sql 语句之后运行的结果不会直接output 出来 , 而是放到了一个缓存区, 要用 fetch语句+print 可以查询sql运行的结果

?fetchone ()得到结果集的下一行

?fetchmany(size)得到结果集的下几行

?fetchall()返回结果集中剩下的所有行

?rowcount 返回影响的行数

?Close()关闭游标对象

3.4Python DB--API的工作原理及流程:

如图所示如果把python 和数据库比作两个不同的地点, connection 就是路, 能连接python和database。cursor就像在路上行驶的小货车, 可以用于执行sql 语句, 以及存储sql 运行的结果。

流程:

4.MS SQL Server 示例:

4.1 导入模块、创建连接:

4.2 创建游标: 游标创建之后就可以对数据库进行查询更改了!

4.3对数据进行操作(创建表、插入行、更新数据、增加列、删除行、列、表):

4.4 查询 获取行:

5.其他:

使用游标的时候要注意, 每次连接只能有一个游标查询处于活跃状态。 code演示:

execute()循环和 executemany() 插入100000 条数据测速:

㈤ Python 入门需要学些什么

Python相对比较简单,零基础也能学。系统学习的话,一般4-6个月左右能学好。

建议大家可以从以下三方面来入手:

①先自学一些python书籍

大家可以从书中了解一些基础知识,建立一些编程认知。

但是这样的方式,还是难免会因为没什么基础很快就觉得枯燥了,所以在书籍方面还是建议大家结合视频课程一起来学习,才能更高效一点。

②网上找相关课程

在mooc网学习的是北京理工大学的一门python公开课,整个流程学习下来能够了解一些基础相关,但课程比较浅显,还是感觉有些不系统,也很难靠自学迅速入门。

③报班学习

很多人对网上报班有些排斥,因为难免会觉得会被割韭菜。但是对于零基础的小白学习python编程而言,跟着专业系统化一点的团队一起学习,势必会更省时省力一点的。

毕竟我们没有基础,靠自学又没啥时间去坚持,能有合适的【线上陪伴式】的课程,还是挺值得一试的。建议大家可以先从体验课开始,了解清楚课程含金量,看看往期学员的体验回馈后再报班学习。

Python的学习学习顺序如下:

①Python软件开发基础

②Python软件开发进阶

③Python全栈式WEB工程师

④Python多领域开发

互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。

想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。

祝你学有所成,望采纳。

㈥ Python数据分析库有哪些

Python数据分析必备的第三方库:

1、Pandas

Pandas是Python强大、灵活的数据分析和探索工具,包含Serise、DataFrame等高级数据结构和工具,安装Pandas可使Python中处理数据非常快速和简单。

Pandas是Python的一个数据分析包,Pandas最初使用用作金融数据分析工具而开发出来,因此Pandas为时间序列分析提供了很好的支持。

Pandas是为了解决数据分析任务而创建的,Pandas纳入了大量的库和一些标准的数据模型,提供了高效的操作大型数据集所需要的工具。Pandas提供了大量是我们快速便捷的处理数据的函数和方法。Pandas包含了高级数据结构,以及让数据分析变得快速、简单的工具。

2、Numpy

Numpy可以提供数组支持以及相应的高效处理函数,是Python数据分析的基础,也是Scipy、Pandas等数据处理和科学计算库最基本的函数功能库,且其数据类型对Python数据分析十分有用。

Numpy提供了两种基本的对象:ndarray和ufunc。ndarray是存储单一数据类型的多维数组,而ufunc是能够对数组进行处理的函数。

3、Matplotlib

Matplotlib是强大的数据可视化工具和作图库,是主要用于绘制数据图表的Python库,提供了绘制各类可视化图形的命令字库、简单的接口,可以方便用户轻松掌握图形的格式,绘制各类可视化图形。

Matplotlib是Python的一个可视化模块,他能方便的只做线条图、饼图、柱状图以及其他专业图形。

Matplotlib是基于Numpy的一套Python包,这个包提供了丰富的数据绘图工具,主要用于绘制一些统计图形。

4、SciPy

SciPy是一组专门解决科学计算中各种标准问题域的包的集合,包含的功能有最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算等,这些对数据分析和挖掘十分有用。

SciPy是一款方便、易于使用、专门为科学和工程设计的Python包,它包括统计、优化、整合、线性代数模块、傅里叶变换、信号和图像处理、常微分方程求解器等。Scipy依赖于Numpy,并提供许多对用户友好的和有效的数值例程,如数值积分和优化。

5、Keras

Keras是深度学习库,人工神经网络和深度学习模型,基于Theano之上,依赖于Numpy和Scipy,利用它可以搭建普通的神经网络和各种深度学习模型,如语言处理、图像识别、自编码器、循环神经网络、递归审计网络、卷积神经网络等。

6、Scrapy

Scrapy是专门为爬虫而生的工具,具有URL读取、HTML解析、存储数据等功能,可以使用Twisted异步网络库来处理网络通讯,架构清晰,且包含了各种中间件接口,可以灵活的完成各种需求。

7、Gensim

Gensim是用来做文本主题模型的库,常用于处理语言方面的任务,支持TF-IDF、LSA、LDA和Word2Vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算、信息检索等一些常用任务的API接口。

㈦ Python中主要使用哪些数据库

Python中常用的数据库有很多,需要根据不同的业务和应用场景来选择合适的数据库,才能使程序更高效.
一般常用的主要有 MySQL, Redis, MangoDB 等数据库
学习这些数据库,可以看黑马程序员视频库的学习视频,有代码、有资料,有PPT,不了解还可以问老师!

㈧ Python就业方向有哪些呀适合小白学习吗

1、Web开发

目前豆瓣、知乎、拉勾网等都是用的Python做开发,由此可见Web开发在国内的发展还是很不错的。

因为Python的web开发框架是最大的一个优势,如果你用Python搭建一个网站,只需要几行的代码,可谓是十分简洁。

2、网络爬虫

现在学习Python的人员中,大部分都是在学习爬虫,这也是Python的一大优势之一,最早用Python做网络爬虫的就是谷歌。

3、人工智能

发展潜力和Money不用多说,这都是大家所知道的,但目前的话,人工智能方面的工作还是比较少的,而且都是高学历人士,以后的话肯定是最具有发展潜力的方向了。

4、服务器运维

运维也不陌生,最开始一批学习Python的人,就是运维和测试的在职人员,因为Python对于他们的工作起到很大的作用,因为使用Python脚本进行批量化的文件部署和运行调整都成了Linux服务器上很不错的选择。

5、数据分析

Python所拥有的完整的生态环境十分有利于进行数据分析处理,比如,"大数据"分析所需要的分布式计算、数据可视化、数据库操作等,都可以通过Python中的十分成熟的模块完成。

想了解更多Python相关,可转:

㈨ python常用到哪些库

Python作为一个设计优秀的程序语言,现在已广泛应用于各种领域,依靠其强大的第三方类库,Python在各个领域都能发挥巨大的作用。
下面我们就来看一下python中常用到的库:
数值计算库:
1. NumPy
支持多维数组与矩阵运算,也针对数组运算提供大量的数学函数库。通常与SciPy和Matplotlib一起使用,支持比Python更多种类的数值类型,其中定义的最重要的对象是称为ndarray的n维数组类型,用于描述相同类型的元素集合,可以使用基于0的索引访问集合中元素。
2. SciPy
在NumPy库的基础上增加了众多的数学、科学及工程计算中常用的库函数,如线性代数、常微分方程数值求解、信号处理、图像处理、稀疏矩阵等,可进行插值处理、信号滤波,以及使用C语言加速计算。
3. Pandas
基于NumPy的一种工具,为解决数据分析任务而生。纳入大量库和一些标准的数据模型,提供高效地操作大型数据集所需的工具及大量的能快速便捷处理数据的函数和方法,为时间序列分析提供很好的支持,提供多种数据结构,如Series、Time-Series、DataFrame和Panel。
数据可视化库:
4. Matplotlib
第一个Python可视化库,有许多别的程序库都是建立在其基础上或者直接调用该库,可以很方便地得到数据的大致信息,功能非常强大,但也非常复杂。
5. Seaborn
利用了Matplotlib,用简洁的代码来制作好看的图表。与Matplotlib最大的区别为默认绘图风格和色彩搭配都具有现代美感。
6. ggplot
基于R的一个作图库ggplot2,同时利用了源于《图像语法》(The Grammar of Graphics)中的概念,允许叠加不同的图层来完成一幅图,并不适用于制作非常个性化的图像,为操作的简洁度而牺牲了图像的复杂度。
7. Bokeh
跟ggplot一样,Bokeh也基于《图形语法》的概念。与ggplot不同之处为它完全基于Python而不是从R处引用。长处在于能用于制作可交互、可直接用于网络的图表。图表可以输出为JSON对象、HTML文档或者可交互的网络应用。
8. Plotly
可以通过Python notebook使用,与Bokeh一样致力于交互图表的制作,但提供在别的库中几乎没有的几种图表类型,如等值线图、树形图和三维图表。
9. pygal
与Bokeh和Plotly一样,提供可直接嵌入网络浏览器的可交互图像。与其他两者的主要区别在于可将图表输出为SVG格式,所有的图表都被封装成方法,且默认的风格也很漂亮,用几行代码就可以很容易地制作出漂亮的图表。
10. geoplotlib
用于制作地图和地理相关数据的工具箱。可用来制作多种地图,比如等值区域图、热度图、点密度图。必须安装Pyglet(一个面向对象编程接口)方可使用。
11. missingno
用图像的方式快速评估数据缺失的情况,可根据数据的完整度对数据进行排序或过滤,或者根据热度图或树状图对数据进行修正。
web开发库:
12. Django
一个高级的Python Web框架,支持快速开发,提供从模板引擎到ORM所需的一切东西,使用该库构建App时,必须遵循Django的方式。
13. Socket
一个套接字通讯底层库,用于在服务器和客户端间建立TCP或UDP连接,通过连接发送请求与响应。
14. Flask
一个基于Werkzeug、Jinja 2的Python轻量级框架(microframework),默认配备Jinja模板引擎,也包含其他模板引擎或ORM供选择,适合用来编写API服务(RESTful rervices)。
15. Twisted
一个使用Python实现的基于事件驱动的网络引擎框架,建立在deferred object之上,一个通过异步架构实现的高性能的引擎,不适用于编写常规的Web Apps,更适用于底层网络。
数据库管理:

16. MySQL-python
又称MySQLdb,是Python连接MySQL最流行的一个驱动,很多框架也基于此库进行开发。只支持Python 2.x,且安装时有许多前置条件。由于该库基于C语言开发,在Windows平台上的安装非常不友好,经常出现失败的情况,现在基本不推荐使用,取代品为衍生版本。
17. mysqlclient
完全兼容MySQLdb,同时支持Python 3.x,是Django ORM的依赖工具,可使用原生SQL来操作数据库,安装方式与MySQLdb一致。
18. PyMySQL
纯Python实现的驱动,速度比MySQLdb慢,最大的特点为安装方式简洁,同时也兼容MySQL-python。
19. SQLAlchemy
一种既支持原生SQL,又支持ORM的工具。ORM是Python对象与数据库关系表的一种映射关系,可有效提高写代码的速度,同时兼容多种数据库系统,如SQLite、MySQL、PostgreSQL,代价为性能上的一些损失。
自动化运维:
20. jumpsever跳板机
一种由Python编写的开源跳板机(堡垒机)系统,实现了跳板机的基本功能,包含认证、授权和审计,集成了Ansible、批量命令等。
支持WebTerminal Bootstrap编写,界面美观,自动收集硬件信息,支持录像回放、命令搜索、实时监控、批量上传下载等功能,基于SSH协议进行管理,客户端无须安装agent。主要用于解决可视化安全管理,因完全开源,容易再次开发。
21. Mage分布式监控系统
一种用Python开发的自动化监控系统,可监控常用系统服务、应用、网络设备,可在一台主机上监控多个不同服务,不同服务的监控间隔可以不同,同一个服务在不同主机上的监控间隔、报警阈值可以不同,并提供数据可视化界面。
22. Mage的CMDB
一种用Python开发的硬件管理系统,包含采集硬件数据、API、页面管理3部分功能,主要用于自动化管理笔记本、路由器等常见设备的日常使用。由服务器的客户端采集硬件数据,将硬件信息发送至API,API负责将获取的数据保存至数据库中,后台管理程序负责对服务器信息进行配置和展示。
23. 任务调度系统
一种由Python开发的任务调度系统,主要用于自动化地将一个服务进程分布到其他多个机器的多个进程中,一个服务进程可作为调度者依靠网络通信完成这一工作。
24. Python运维流程系统
一种使用Python语言编写的调度和监控工作流的平台,内部用于创建、监控和调整数据管道。允许工作流开发人员轻松创建、维护和周期性地调度运行工作流,包括了如数据存储、增长分析、Email发送、A/B测试等诸多跨多部门的用例。
GUI编程:
25. Tkinter
一个Python的标准GUI库,可以快速地创建GUI应用程序,可以在大多数的UNIX平台下使用,同样可以应用在Windows和Macintosh系统中,Tkinter 8.0的后续版本可以实现本地窗口风格,并良好地运行在绝大多数平台中。
26. wxPython
一款开源软件跨平台GUI库wxWidgets的Python封装和Python模块,是Python语言的一套优秀的GUI图形库,允许程序员很方便地创建完整的、功能健全的GUI用户界面。
27. PyQt
一个创建GUI应用程序的工具库,是Python编程语言和Qt的成功融合,可以运行在所有主要操作系统上,包括UNIX、Windows和Mac。PyQt采用双许可证,开发人员可以选择GPL和商业许可,从PyQt的版本4开始,GPL许可证可用于所有支持的平台。
28. PySide
一个跨平台的应用程式框架Qt的Python绑定版本,提供与PyQt类似的功能,并相容API,但与PyQt不同处为其使用LGPL授权。
更多Python知识请关注Python自学网。

㈩ Python五大应用领域是什么

一、网络爬虫


网络爬虫是Python比较常用的一个场景,国际上,google在前期大量地运用Python言语作为网络爬虫的根底,带动了整个Python言语的运用发展。


二、数据处理


Python有很齐备的生态环境。"大数据"分析中涉及到的分布式核算、数据可视化、数据库操作等,Python中都有成熟的模块能够挑选完结其功能。关于Hadoop-MapRece和Spark,都能够直接运用Python完结核算逻辑,这不管关于数据科学家仍是关于数据工程师而言都是十分便当的。


三、web开发


Python的诞生前史比Web还要早,由于Python是一种解说型的脚本言语,开发效率高,所以十分适合用来做Web开发。


Django 是 Python 编程言语驱动的一个开源模型-视图-控制器(MVC)风格的 Web 运用程序结构。运用 Django,咱们在几分钟之内就能够创建高品质、易维护、数据库驱动的运用程序。


四、数据分析


关于数据分析师来说,不只要自己理解数据背面的含义,而且还要给更直地展现数据的含义。


Scipy是一组专门解决科学核算中各种规范问题域的包的集合。Numpy是python科学核算的根底包。Pandas处理上千万的数据是一挥而就的工作,同时随后咱们也将看到它比SQL有更强的表达能力,能够做很多复杂的操作,要写的code也更少。


五、人工智能


人工智能是现在十分火的一个方向,AI热潮让Python言语的未来充满了无限的潜力。现在释放出来的几个十分有影响力的AI结构,大多是Python的实现,为什么呢?


在人工智能大领域领域内的数据发掘、机器学习、神经网络、深度学习等方面都是主流的编程言语,得到广泛的支持和运用。人工智能的核心算法大部分仍是依赖于C/C++的,由于是核算密集型,需求十分精细的优化,还需求GPU、专用硬件之类的接口,这些都只要C/C++能做到。


关于Python五大应用领域是什么,环球青藤小编就和大家分享到这里了,学习是永无止境的,学习一项技能更是受益终身,所以,只要肯努力学,什么时候开始都不晚。如果您还想继续了解关于python编程的学习方法及素材等内容,可以点击本站其他文章学习。

阅读全文

与python中常用的数据库相关的资料

热点内容
压缩因子定义 浏览:968
cd命令进不了c盘怎么办 浏览:214
药业公司招程序员吗 浏览:974
毛选pdf 浏览:659
linuxexecl函数 浏览:727
程序员异地恋结果 浏览:374
剖切的命令 浏览:229
干什么可以赚钱开我的世界服务器 浏览:290
php备案号 浏览:990
php视频水印 浏览:167
怎么追程序员的女生 浏览:487
空调外压缩机电容 浏览:79
怎么将安卓变成win 浏览:459
手机文件管理在哪儿新建文件夹 浏览:724
加密ts视频怎么合并 浏览:775
php如何写app接口 浏览:804
宇宙的琴弦pdf 浏览:396
js项目提成计算器程序员 浏览:944
pdf光子 浏览:834
自拍软件文件夹名称大全 浏览:328